Skip to main content
Log in

Species differences in presynaptic serotonin autoreceptors: mainly 5-HT1B but possibly in addition 5-HT1D in the rat, 5-HT1D in the rabbit and guinea-pig brain cortex

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

The pharmacological properties of presynaptic serotonin autoreceptors were compared in slices of rat, rabbit, and guinea-pig brain cortex. The slices were preincubated with 3H-serotonin and then superfused with medium containing fluvoxamine 3 μmol/l and stimulated four times by trains of four pulses delivered at 100 Hz. Cumulative concentration-response curves were determined and used for the calculation of agonist EC50 values and maximal effects and antagonist K B values.

Unlabelled serotonin itself and the serotonin receptor agonists 5-carboxamidotryptamine (5-CT), 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-indole (RU 24969) and (±)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) reduced the stimulation-evoked overflow of tritium with a rank order of potency 5-CT = RU 24969 > serotonin > 8-OH-DPAT in the rat and 5-CT > serotonin > RU 24969 > 8-OH-DPAT in the rabbit and guinea-pig. Ipsapirone caused no change. Metitepine and metergoline antagonized the effect of 5-CT; the K B values were lower in the rabbit and guinea-pig than in the rat. Yohimbine at up to 1 μmol/1 did not reduce the evoked overflow of tritium and did not antagonize the inhibitory effect of 5-CT in the rat but reduced the evoked overflow in the rabbit and counteracted the effect of 5-CT in the guinea-pig. (−)-Propranolol, conversely, reduced the evoked overflow of tritium in the rat but neither reduced the evoked overflow nor antagonized the effect of 5-CT in the rabbit and guinea-pig. Isamoltane did not significantly change the effect of 5-CT in any species. In the rat, it also failed to antagonize the inhibitory effect of 8-OH-DPAT but did antagonize the effect of RU 24969. The inhibition caused by 8-OH-DPAT persisted in the presence of idazoxan but was attenuated by metitepine in all species.

The experimental conditions used permit the determination of the constants of agonist and antagonist action undistorted by autoinhibition. The results confirm the view that the serotonin axons of rat brain possess 5-HT1B autoreceptors. They show by direct comparison under identical conditions that the autoreceptors in rabbit and guinea-pig are very similar to each other but differ markedly from those in the rat. The results give additional credence to previous suggestions that, in the rabbit and guinea-pig, the autoreceptors are 5-HT1D. The serotonin axons of rat brain cortex may possess 5-1D in addition to 5-HT1B autoreceptors. In many previous studies agonist potencies at, and antagonist affinities for, presynaptic serotonin autoreceptors have been underestimated due to the use of too intense stimuli to elicit serotonin release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol 14:48–58

    CAS  Google Scholar 

  • Bonanno G, Maura G, Raiteri M (1986) Pharmacological characterization of release-regulating serotonin autoreceptors in rat cerebellum. Eur J Pharmacol 126:317–321

    Article  CAS  Google Scholar 

  • Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PPA, Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR (1986) Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25:563–576

    Article  CAS  Google Scholar 

  • Crist J, Surprenant A (1987) Evidence that 8-hydroxy-2-(n-dipropylamino)tetralin (8-OH-DPAT) is a selective α2-adrenoceptor antagonist on guinea-pig submucous neurones. Br J Pharmacol 92:341–347

    Article  CAS  Google Scholar 

  • Dumuis A, Sebben M, Bockaert J (1989) The gastrointestinal prokinetic benzamide derivatives are agonists at the non-classical 5-HT receptor (5-HT4) positively coupled to adenylate cyclase in neurons. Naunyn-Schmiedeberg's Arch Pharmacol 340:403–410

    Article  CAS  Google Scholar 

  • Engel G, Göthert M, Müller-Schweinitzer E, Schlicker E, Sistonen L, Stadler PA (1983) Evidence for common pharmacological properties of [3H]5-hydroxytryptamine binding sites, presynaptic 5-hydroxytryptamine autoreceptors in CNS and inhibitory presynaptic 5-hydroxytryptamine receptors on sympathetic nerves. Naunyn-Schmiedeberg's Arch Pharmacol 324:116–124

    Article  CAS  Google Scholar 

  • Engel G, Göthert M, Hoyer D, Schlicker E, Hillenbrand K (1986) Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn-Schmiedeberg's Arch Pharmacol 332:1–7

    Article  CAS  Google Scholar 

  • Feuerstein TJ, Hertting GJackisch R (1985) Endogenous noradrenaline as modulator of hippocampul serotonin (5-HT)-release. Naunyn-Schmiedeberg's Arch Pharmacol 329:216–221

    Article  CAS  Google Scholar 

  • Feuerstein TJ, Lupp A, Hertting G (1987) The serotonin (5-HT) autoreceptor in the hippocampus of the rabbit: role of 5-HT biophase concentration. Neuropharmacology 26:1071–1080

    Article  CAS  Google Scholar 

  • Fischer MRG, Limberger N, Starke K (1990) The transmitter release pattern of serotonin axons in rabbit brain cortex slices during short pulse trains. Neurochem Int 17:129–137

    Article  CAS  Google Scholar 

  • Galzin AM, Blier P, Chodkiewicz JP, Poirier MF, Loo H, Roux FX, Bedondo A, Lista A, Ramdine R, Langer SZ (1988) Pharmacological characterization of the serotonin (5-HT) autoreceptor modulating the electrically-evoked release of [3H]-5-HT from slices of human frontal cortex. Soc Neurosci Abstr 14:313

    Google Scholar 

  • Göthert M, Schlicker E (1983) Autoreceptor-mediated inhibition of 3H-5-hydroxytryptamine release from rat brain cortex slices by analogues of 5-hydroxytryptamine. Life Sci 32:1183–1191

    Article  Google Scholar 

  • Göthert M, Huth H, Schlicker E (1981) Characterization of the receptor subtype involved in alpha-adrenoceptor-mediated modulation of serotonin release from rat brain cortex slices. Naunyn-Schmiedeberg's Arch Pharmacol 317:199–203

    Article  Google Scholar 

  • Göthert M, Schlicker E, Fink K, Classen K (1987) Effects of RU 24969 on serotonin release in rat brain cortex: further support for the identity of serotonin autoreceptors with 5-HT1B sites. Arch Int Pharmacodyn 288:31–42

    PubMed  Google Scholar 

  • Hamon M, Bourgoin S, Gozlan H, Hall MD, Goetz C, Artaud F, Horn AS (1984) Biochemical evidence for the 5-HT agonist properties of PAT (8-hydroxy-2-(di-n-propylamino)tetratin) in the rat brain. Eur J Pharmacol 100:263–276

    Article  CAS  Google Scholar 

  • Herrick-Davis K, Titeler M (1988) Detection and characterization of the serotonin 5-HT1D receptor in rat and human brain. J Neurochem 50:1624–1631

    Article  CAS  Google Scholar 

  • Heuring RE, Peroutka SJ (1987) Characterization of a novel 3H-5-hydroxytryptamine binding site subtype in bovine brain membranes. J Neurosci 7:894–903

    Article  CAS  Google Scholar 

  • Hoyer D, Middlemiss DN (1989) Species differences in the pharmacology of terminal 5-HT autoreceptors in mammalian brain. Trends Pharmacol Sci 10:130–132

    Article  CAS  Google Scholar 

  • Leonhardt S, Herrick-Davis K, Titeler M (1989) Detection of a novel serotonin receptor subtype (5-HT1E) in human brain: interaction with a GTP-binding protein. J Neurochem 53:465–471

    Article  CAS  Google Scholar 

  • Limberger N, Bonanno G, Späth L, Starke K (1986) Autoreceptors and α2-adrenoceptors at the serotonin axons of rabbit brain cortex. Naunyn-Schmiedeberg's Arch Pharmacol 332:324–331

    Article  CAS  Google Scholar 

  • Limberger N, Mayer A, Zier G, Valenta B, Starke K, Singer EA (1989) Estimation of pA2 values at presynaptic α2-autoreceptors in rabbit and rat brain cortex in the absence of autoinhibition. Naunyn-Schmiedeberg's Arch Pharmacol 340:639–647

    Article  CAS  Google Scholar 

  • Limberger N, Starke K, Singer EA (1990) Serotonin uptake blockers influence serotonin autoreceptors by increasing the biophase concentration of serotonin and not through a “molecular link”. Naunyn-Schmiedeberg's Arch Pharmacol 342:363–370

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Martin LL, Sanders-Bush E (1982) Comparison of the pharmacological characteristics of 5-HT1 and 5-HT2 binding sites with those of serotonin autoreceptors which modulate serotonin release. Naunyn-Schmiedeberg's Arch Pharmacol 321:165–170

    Article  CAS  Google Scholar 

  • Maura G, Roccatagliata E, Raiteri M (1986) Serotonin autoreceptor in rat hippocampus: pharmacological characterization as a subtype of the 5-HT1 receptor. Naunyn-Schmiedeberg's Arch Pharmacol 334:323–326

    Article  CAS  Google Scholar 

  • Maura G, Ulivi M, Raiteri M (1987) (−)-Propranolol and (±)-cyanopindolol are mixed agonists-antagonists at serotonin autoreceptors in the hippocampus of the rat brain. Neuropharmacology 26:713–717

    Article  CAS  Google Scholar 

  • Middlemiss DN (1984a) Stereoselective blockade at [3H]5-HT binding sites and at the 5-HT autoreceptor by propranolol. Eur J Pharmacol 101:289–293

    Article  CAS  Google Scholar 

  • Middlemiss DN (1984b) 8-Hydroxy-2-(di-n-propylamino) tetralin is devoid of activity at the 5-hydroxytryptamine autoreceptor in rat brain. Implications for the proposed link between the autoreceptor and the [3H]5-HT recognition site. Naunyn-Schmiedeberg's Arch Pharmacol 327:18–22

    Article  CAS  Google Scholar 

  • Middlemiss DN (1985) The putative 5-HT1 receptor agonist, RU 24969, inhibits the efflux of 5-hydroxytryptamine from rat frontal cortex slices by stimulation of the 5-HT autoreceptor. J Pharm Pharmacol 37:434–437

    Article  CAS  Google Scholar 

  • Middlemiss DN, Bremer ME, Smith SM (1988) A pharmacological analysis of the 5-HT receptor mediating inhibition of 5-HT release in the guinea-pig frontal cortex. Eur J Pharmacol 157:101–107

    Article  CAS  Google Scholar 

  • Motulsky HJ, Ransnas LA (1987) Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J 1:365–374

    Article  CAS  Google Scholar 

  • Richards MH (1985) Efflux of 3H-5-hydroxytryptamine from rat hypothalamic slices by continuous electrical stimulation: frequency-dependent responses to serotonergic antagonists and 5-hydroxytryptamine. Naunyn-Schmiedeberg's Arch Pharmacol 329:359–366

    Article  CAS  Google Scholar 

  • Schipper J (1990) Pharmacological characterization of serotonin autoreceptors. Pharmacol Toxicol 66, Suppl 111:149

    Google Scholar 

  • Schipper J, Tulp MTM (1988) Serotonin autoreceptors in guinea pig cortex slices resemble the 5-HT1D binding site. Soc Neurosci Abstr 14:552

    Google Scholar 

  • Schlicker E, Fink K, Göthert M, Hoyer D, Molderings G, Roschke I, Schoeffter P (1989) The pharmacological properties of the presynaptic serotonin autoreceptor in the pig brain cortex conform to the 5-HT1D receptor subtype. Naunyn-Schmiedeberg's Arch Pharmacol 340:45–51

    CAS  Google Scholar 

  • Schoeffter P, Hoyer D (1989a) Interaction of arylpiperazines with 5-HT1A 5-HT1B, 5-HT1C and 5-HT1D receptors: do discriminatory 5-HT1B receptor ligands exist? Naunyn-Schmiedeberg's Arch Pharmacol 339:675–683

    Article  CAS  Google Scholar 

  • Schoeffter P, Hoyer D (1989b) 5-Hydroxytryptamine 5-HT1B and 5-HT1D receptors mediating inhibition of adenylate cyclase activity. Naunyn-Schmiedeberg's Arch Pharmacol 340:285–292

    CAS  Google Scholar 

  • Schoeffter P, Hoyer D (1990) 5-Hydroxytryptamine (5-HT)-induced endothelium-dependent relaxation of pig coronary arteries is mediated by 5-HT receptors similar to the 5-HT1D receptor subtype. J Pharmacol Exp Ther 252:387–395

    CAS  PubMed  Google Scholar 

  • Shenker A, Maayani S, Weinstein H, Green JP (1987) Pharmacological characterization of two 5-hydroxytryptamine receptors coupled to adenylate cyclase in guinea pig hippocampal membranes. Mol Pharmacol 31:357–367

    CAS  PubMed  Google Scholar 

  • Singer EA (1988) Transmitter release from brain slices elicited by single pulses: a powerful method to study presynaptic mechanisms. Trends Pharmacol Sci 9:274–276

    Article  CAS  Google Scholar 

  • Starke K (1987) Presynaptic α-autoreceptors. Rev Physiol Biochem Pharmacol 107:73–146

    Article  CAS  Google Scholar 

  • Starke K, Montel H, Gayk W, Merker R (1974) Comparison of the effects of clonidine on pre-and postsynaptic adrenoceptors in the rabbit pulmonary artery. Naunyn-Schmiedeberg's Arch Pharmacol 285:133–150

    Article  CAS  Google Scholar 

  • Starke K, Göthert M, Kilbinger H (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69:864–989

    Article  CAS  Google Scholar 

  • Steppeler A, During C, Hedler L, Starke K (1982) Effect of amezinium on the release and catabolism of 3H-monoamines in brain slices. Biochem Pharmacol 31:2395–2402

    Article  CAS  Google Scholar 

  • Wacber C, Schoeffter P, Palacios JM, Hoyer D (1988) Molecular pharmacology of 5-HT1D recognition sites: radioligand binding studies in human, pig and calf brain membranes. Naunyn-Schmiedeberg's Arch Pharmacol 337:595–601

    Google Scholar 

  • Waldmeier PC, Williams M, Baumann PA, Bischoff S, Sills MA, Neale RF (1988) Interactions of isamoltane (CGP 361 A), an anxiolytic phenoxypropanolamine derivative, with 5-HT1 receptor subtypes in the rat brain. Naunyn-Schmiedeberg's Arch Pharmacol 337:609–620

    CAS  Google Scholar 

  • Waud DR (1975) Analysis of dose-response curves. In: Daniel EE, Paton DM (eds) Methods in pharmacology, vol 3. Plenum Press, New York London, pp 471–506

    Google Scholar 

  • Wichmann T, Limberger N, Starke K (1989) Release and modulation of release of serotonin in rabbit superior colliculus. Neurosci 32:141–151

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Send offprint requests to N. Limberger at the above address

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limberger, N., Deicher, R. & Starke, K. Species differences in presynaptic serotonin autoreceptors: mainly 5-HT1B but possibly in addition 5-HT1D in the rat, 5-HT1D in the rabbit and guinea-pig brain cortex. Naunyn-Schmiedeberg's Arch Pharmacol 343, 353–364 (1991). https://doi.org/10.1007/BF00179039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00179039

Key words

Navigation