Skip to main content
Log in

Influence of the external K+-concentration on the electrical activity and the Na+-, K+-content of the retinal tissue

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The effect of the external K+-concentration in a range from 0 to 10 mMol/l on the exposure potential (ERG) and the Na+-, K+-distribution in the retinal tissue of Rana esculenta was investigated. After 45 min of perfusion with the test solution moist combustion of the tissue and analysis by flame photometry was carried out.

At concentrations of less than 1 mMol/l an extensive loss of retinal potassium could be observed which corresponded to a slow and steady decrease of the exposure potential. Simultaneously the mean intracellular Na+-content increased. Above 2 mMol/l a rapid decline of the potentialΦ b to a constant level was recorded. At the same time there was a slight increase in retinal potassium and a decrease in sodium.

The quick transition to steady values of the ERG at high external K+-concentrations is attributed to the limitation of the potassium uptake of retinal cells which brings about a constant distribution of electrolytes in a short time. The slow drop in potential at a low potassium content of the bathing solution is ascribed to the diffusion process of K+ through cellular membranes of the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames, A., III, Nesbett, F. B.: Intracellular and extracellular compartments of mammalian central nervous tissue. J. Physiol.184, 215–238 (1966).

    Google Scholar 

  • Beuchelt, H.: Die Abhängigkeit der photoelektrischen Reaktion des Froschauges von den ableitenden Medien. Z. Biol.73, 205–230 (1921).

    Google Scholar 

  • Borchard, U.: Untersuchungen über Belichtungspotentiale und Ionentransport im Retina-Membransystem. Inaugural-Dissertation, Köln 1969.

  • Borchard, U.: Untersuchung des Ionentransportes im Membransystem der Froschretina bei gleichzeitiger Registrierung des ERG. Pflügers Arch.316, R98 (1970).

    Google Scholar 

  • Desmedt, J. E.: Electrical activity and intracellular sodium concentration in frog muscle. J. Physiol. (Lond.)121, 191–205 (1953).

    Google Scholar 

  • Furukawa, T., Hanawa, I.: Effects of some common cations on electroretinogram of the toad. Jap. J. Physiol.5, 289–300 (1955).

    Google Scholar 

  • Hamasaki, D. I.: The effect of sodium ion concentration on the electroretinogram of the isolated retina of the frog. J. Physiol. (Lond.)167, 156–168 (1963).

    Google Scholar 

  • Hamasaki, D. I.: The electroretinogram after application of various substances to the isolated retina. J. Physiol. (Lond.)173, 449–458 (1964).

    Google Scholar 

  • Hanawa, I., Kuge, K., Matsumura, K.: Effects of some common ions on the transretinal dc potential and the electroretinogram of the isolated frog retina. Jap. J. Physiol.17, 1–20 (1967).

    Google Scholar 

  • Hodgkin, A. L.: The ionic basis of electrical activity in nerve and muscle. Biol. Rev.26, 339–409 (1951).

    Google Scholar 

  • Hodgkin, A. L., Keynes, R. D.: Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. (Lond.)128, 28–60 (1955).

    Google Scholar 

  • Katz, B.: Nerve, muscle and synapse. New York: Mc Grow-Hill 1966.

    Google Scholar 

  • Keynes, R. D.: The ionic fluxes in frog muscle. Proc. roy. Soc. B142, 359–382 (1954).

    Google Scholar 

  • Kuriyama, H. A., Jojima, T.: Na and K contents of retina of toad and electroretinogram. Jap. J. Physiol.7, 241–251 (1957).

    Google Scholar 

  • Lehninger, A. L.: Role of metal ions in enzyme systems. Physiol. Rev.30, 393–429 (1950).

    Google Scholar 

  • Müller-Limmroth, W.: Elektrophysiologie des Gesichtssinns. Berlin-Göttingen-Heidelberg: Springer 1959.

    Google Scholar 

  • Netter, H.: Biologische Physikochemie. Potsdam: Akad. Verlagsges. Athenaion 1951.

    Google Scholar 

  • Ottoson, D., Svaetichin, G.: Electrophysiological investigations of the origin of the ERG of the frog retina. Acta physiol. scand.29, Suppl.106, 538–564 (1953).

    Google Scholar 

  • Sickel, W.: Stoffwechsel und Funktion der isolierten Netzhaut. In: Neurophysiologie und Psychophysik des visuellen Systems. Hrsg. von R. Jung u. H. Kornhuber. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Steinbach, H. B.: Sodium extrusion from isolated frog muscle. Amer. J. Physiol.167, 284–287 (1951).

    Google Scholar 

  • Terner, C., Eggleston, L. V., Krebs, H. A.: The role of glutamic acid in the transport of potassium in brain and retina. Biochem. J.47, 139–149 (1950).

    Google Scholar 

  • Ussing, H. H.: Ion transport across biological membranes. In: Ion transport across membranes. Ed. H. T. Clarke and D. Nachmansohn. New York: Acad. Press 1954.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partly supported by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borchard, U., Erasmi, W. Influence of the external K+-concentration on the electrical activity and the Na+-, K+-content of the retinal tissue. Pflugers Arch. 341, 297–304 (1973). https://doi.org/10.1007/BF01023671

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01023671

Key words

Navigation