Skip to main content
Log in

Computerised image analysis of split-drop micropuncture data

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

A technique is described for rapid and reproducible analysis of split-drop micropuncture sequences recorded on film. Automatic identification of the droplet menisci in each cine frame, and subsequent evaluation is performed by a computerised T.V. image analysis system. In comparison with a more conventional technique, the improvement in reproducibility of the analysis is achieved without loss of accuracy and is accompanied by a three fold increase in speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bishop, J. H. V., Green, R., Thomas, S.: Effects of glucose on water and sodium reabsorption in the proximal convoluted tubule of rat kidney. J. Physiol. (Lond.)275, 481–493 (1978)

    Google Scholar 

  2. Gertz, K. H.: Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol.276, 336–356 (1963)

    Google Scholar 

  3. Grandchamp, A., Boulpaep, E. L.: Effect of intraluminal pressure on proximal tubular sodium reabsorption. A shrinking drop micropuncture study. Yale J. Biol. Med.45, 275–288 (1972)

    Google Scholar 

  4. Green, R., Bishop, J. H. V., Giebisch, G.: Ionic requirements of proximal tubular sodium transport. III Selective luminal ion substitution. Am. J. Physiol.236, F268-F277 (1979)

    Google Scholar 

  5. Györy, A. Z.: Reexamination of the split oil droplet method as applied to kidney tubules. Pflügers Arch.324, 328–343 (1971)

    Google Scholar 

  6. Györy, A. Z.: Sources of error in and limitations in the use oft 1/2 as a measure of tubular reabsorptive capacity. Yale J. Biol. Med.45, 269–274 (1972)

    Google Scholar 

  7. Nakajima, K., Clapp, J. R., Robinson, R. R.: Limitations of the shrinking-drop micropuncture technique. Am. J. Physiol.219, 345–357 (1970)

    Google Scholar 

  8. Neumann, K. H., Rector, F. C., Jr.: Mechanism of NaCl and water reabsorption in the proximal convoluted tubule of rat kidney. J. Clin. Invest.58, 1110–1118 (1976)

    Google Scholar 

  9. Sato, K.: Reevaluation of micropuncture techniques: some of the factors which affect the rate of fluid absorption by the proximal tubule. In: Biochemical aspects of renal function: Current problems in clinical biochemistry, Vol. 4 (S. Angielski and U. C. Dubach, eds.), pp. 175–187. Bern-Stuttgart-Wien: Huber 1975

    Google Scholar 

  10. Steinhausen, M.: Messungen des tubulären Harnstromes und der tubulären Reabsorption unter erhöhtem Ureterdruck. Intravitalmikroskopische Untersuchungen an der Nierenrinde von Ratten. Pflügers Arch. ges. Physiol.298, 105–130 (1967)

    Google Scholar 

  11. Weinman, E. J., Hardy, R. J., Kashgarian, M., Hayslett, J. P.: Examination of the Gertz techniques as applied to the proximal tubule of the rat kidney. Yale J. Biol. Med.45, 289–298 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garland, H.O., Brunt, J.N.H., Taylor, C.J. et al. Computerised image analysis of split-drop micropuncture data. Pflugers Arch. 381, 11–14 (1979). https://doi.org/10.1007/BF00582325

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00582325

Key words

Navigation