Skip to main content
Log in

Ionic conductances of cultured principal cell epithelium of renal collecting duct

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The ionic conductive properties were studied of epithelia of collecting duct principal cells which had been grown in primary tissue culture from renal cortex/capsule explants. When pretreated with aldosterone (10−6 mol/l) and bathed on either surface with isotonic HCO 3 -free Ringer's solution, the transepithelial voltage,V te, varied between −21 and −72 mV (apical surface negative) while the transepithelial resistance,R te, ranged from 0.4 to 1.5 kΩcm2. By 10:1 step-changes in Na+ concentration the apical cell membrane was shown to have a high conductivity for sodium, inhibitable by amiloride, 10−6 mol/l. However, contrary to observations in natural collecting duct under control conditions, amiloride never reversed the polarity ofV te even at 10−4 mol/l. Both the apical and the basolateral cell membranes were conductive for potassium and both conductivities were inhibitable by Ba2+ (5 mmol/l). 10:1 reduction of apical Cl concentration strongly hyperpolarizedV te with a monophasic time course suggesting the presence of a paracellular shunt conductance for Cl. In addition there may be a small Cl conductance present in the apical cell membrane since apical application of the chloride channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPAB) at 10−7 mol/l produced a minute but significant hyperpolarization. On the other hand, 10:1 reduction of basolateral Cl concentration caused a biphasic change inV te (initial depolarization, followed by repolarization) which indicates the presence of a large Cl conductance in the basolateral cell membrane. The latter was not inhibitable by 10−7 mol/l NPPAB. Higher concentrations of this and of an other Cl channel blocker produced non-specific effects. In conclusion, our studies of a pure principal cell epithelium confirm findings described for the intact cortical collecting duct and add new information concerning chloride conductivity and related blocking agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Awquati Q, Schwartz GJ (1985) Plasticity in epithelial polarity. Vth European Colloqium on Renal Physiology, Abstracts: 7

  2. Burckhardt BC, Cassola AD, Frömter E (1988) Exclusion of HCO 3 effects on other ion permeabilities and on coupled electroneutral HCO 3 transport. Pflügers Arch (in press)

  3. Christine CW, Laskowski FM, Gitter AH, Gross P, Frömter E (1987) Chloride-selective single ion channels in the apical membrane of cultured collecting duct principal cells. Pflügers Arch 408:R32

    Article  Google Scholar 

  4. Fejes-Toth G, Naray-Fejes-Toth A (1987) Characteristics of cultured rabbit collecting tubule cells obtained by immuno-adsorption. Kidney Int 31:166 (abstract)

    Google Scholar 

  5. Frömter E (1986) The electrophysiological analysis of tubular transport. Kidney Int 30:216–228

    Article  PubMed  Google Scholar 

  6. Gitter AH, Beyenbach KW, Christine CW, Gross P, Minuth WW, Frömter E (1987) High-conductance K+ channel in apical membranes of principal cells cultured from rabbit renal cortical collecting duct anlagen. Pflügers Arch 408:282–290

    Article  CAS  PubMed  Google Scholar 

  7. Grantham JJ, Burg MB, Orloff J (1970) The nature of transtubular Na and K transport in the isolated rabbit renal collecting tubule. J Clin Invest 49:1815–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gross P, Minuth WW, Kriz W, Frömter E (1986) Electrical properties of renal collecting duct principal cell epithelium in tissue culture. Pflügers Arch 406:380–386

    Article  CAS  PubMed  Google Scholar 

  9. Hanley MJ, Kokko JP (1978) Study of chloride transport across the rabbit cortical collecting tubule. J Clin Invest 62:39–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hanley MJ, Kokko JP, Gross JB, Jacobson HR (1980) Electrophysiologic study of the cortical collecting tubule of the rabbit. Kidney Int 17:74–81

    Article  CAS  PubMed  Google Scholar 

  11. Helman SI, Miller DA (1971) In vitro techniques for avoiding edge damage in studies of frog skin. Science 173:146–148

    Article  CAS  PubMed  Google Scholar 

  12. Hodgkin AL, Horowicz P (1959) The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol 148:127–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jacobson HR (1981) Functional segmentation of the mammalian nephron. Am J Physiol 241:F203–F218

    CAS  PubMed  Google Scholar 

  14. Kaissling B, Kriz W (1979) Structural analysis of the rabbit kidney. In: Advances in anatomy, embryology and cell biology. Springer, Berlin Heidelberg New York, 56:91–126

    Google Scholar 

  15. Kaissling B, Le Hir M (1982) Distal tubular segments of the rabbit kidney after adaptation to altered sodium and potassium intake. I. Structural changes. Cell Tissue Res 224:469–492

    Article  CAS  PubMed  Google Scholar 

  16. Knauf PA, Rothstein A (1971) Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell. J Gen Physiol 58:190–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308

    Article  CAS  PubMed  Google Scholar 

  18. Koeppen BM (1985) Conductive properties of the rabbit outer medullary collecting duct: inner stripe. Am J Physiol 248: F500–F506

    CAS  PubMed  Google Scholar 

  19. Koeppen B, Giebisch G (1985) Cellular electrophysiology of potassium transport in the mammalian cortical collecting tubule. Pflügers Arch 405:S143–S146

    Article  PubMed  Google Scholar 

  20. Koeppen BM, Steinmetz PR (1983) Basic mechanisms of urinary acidification. Med Clin North Am 67:753–770

    Article  CAS  PubMed  Google Scholar 

  21. Koeppen BM, Biagi BA, Giebisch GH (1983) Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am J Physiol 244:F35–F47

    CAS  PubMed  Google Scholar 

  22. Kriz W (1982) Distal convoluted tubule and collecting duct system. In: Jamison RC, Kriz W (eds) Urinary concentrating mechanism. University Press, Oxford, pp 189–205

    Google Scholar 

  23. Lönnerholm G, Ridderstrale Y (1980) Intracellular distribution of carbonic anhydrase in the rat kidney. Kidney Int 17: 162–174

    Article  PubMed  Google Scholar 

  24. Madsen KM, Tisher CC (1986) Structural-functional relationship along the distal nephron. Am J Physiol 250:F1–F15

    CAS  Google Scholar 

  25. Minuth WW (1983) Induction and inhibition of outgrowth and development of renal collecting duct epithelium. Lab Invest 48:543–548

    CAS  PubMed  Google Scholar 

  26. Minuth WW, Kriz W (1982) Renal collecting duct cells cultured as globular bodies and as monolayers. J Tiss Cul Meth 7:93–96

    Article  Google Scholar 

  27. Minuth WW, Gilbert P, Lauer G, Aktories K, Gross P (1986) Differentiation properties of renal collecting duct cells in culture. Differentiation 33:156–167

    Article  CAS  PubMed  Google Scholar 

  28. Minuth WW, Gross P, Gilbert P, Kashgarian M (1987) Expression of the α-subunit of Na/K-ATPase in renal collecting duct epithelium during development. Kidney Int 31: 1104–1112

    Article  CAS  PubMed  Google Scholar 

  29. Nagel W, Hirschmann W (1980) K+-permeability of the outer border of the frog skin (R. temporaria). J Membr Biol 52: 107–113

    Article  CAS  PubMed  Google Scholar 

  30. Nielsen R (1984) Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane. Acta Physiol Scand 120:287–296

    Article  CAS  PubMed  Google Scholar 

  31. O'Neil RG, Boulpaep EL (1982) Ionic conductive properties and electrophysiology of the rabbit cortical collecting tubule. Am J Physiol 243:F81–F95

    PubMed  Google Scholar 

  32. O'Neil RG, Helman SI (1977) Transport characteristics of renal collecting tubules: influences of DOCA and diet. Am J Physiol 233:F544–F558

    PubMed  Google Scholar 

  33. O'Neil RG, Sansom SG (1984) Characterisation of apical cell membrane Na+ and K+ conductances of cortical collecting duct using microelectrode techniques. Am J Physiol 247:F14–F24

    PubMed  Google Scholar 

  34. Rascher W, Lang RE, Taubitz M, Meffle M, Unger T, Ganten D, Gross F (1982) Vasopressin-induced increase in total peripheral resistance in deoxycorticosterone acetate hypertensive rats is buffered by the baroreceptor reflex. Clin Sci 61:1638–1665

    Google Scholar 

  35. Sansom SC, O'Neil RG (1985) Mineralocorticoid regulation of apical cell membrane Na+ and K+ transport of the cortical collecting duct. Am J Physiol 248:F858–F868

    CAS  PubMed  Google Scholar 

  36. Sansom SC, O'Neil RG (1986) Effects of mineralocorticoids on transport properties of cortical collecting duct basolateral membranes. Am J Physiol 251:F743–F757

    CAS  PubMed  Google Scholar 

  37. Sansom SC, Weinmann EJ, O'Neil RG (1984) Microelectrode assessment of chloride conductive properties of cortical collecting duct. Am J Physiol 247:F296–F302

    Google Scholar 

  38. Sansom SC, Agulian S, Giebisch G (1987) Mineralocorticoid regulation of intracellular K activity of principal cells of isolated cortical collecting duct. Kidney Int 31:441 (abstract)

    Google Scholar 

  39. Schlatter E, Schafer JA (1987) ADH-increased apical Na+ conductance in principal cells of rat cortical collecting tubules. Kidney Int 31:441 (abstract)

    Google Scholar 

  40. Schuster VL, Bonsib SM, Jennings ML (1986) Two types of collecting duct mitochondria-rich (intercalated) cells: lectin and band 3 cytochemistry. Am J Physiol 251:C347–C355

    CAS  PubMed  Google Scholar 

  41. Stanton B, Janzen A, Klein-Robbenhaar G, de Fronzo R, Giebisch G, Wade J (1985) Ultrastructure of rat initial collecting tubule. J Clin Invest 75:1327–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stein JH, Reineck HJ (1974) The role of the collecting duct in the regulation of sodium and other electrolytes. Kidney Int 6:1–9

    Article  CAS  PubMed  Google Scholar 

  43. Stetson DL, Steinmetz PR (1985) α and β types of carbonic anhydrase-rich cells in turtle bladder. Am J Physiol 249: F553–F565

    CAS  PubMed  Google Scholar 

  44. Stokes JB, Ingram MJ, Williams AD, Ingram D (1981) Heterogeneity of rabbit collecting tubule: localisation of mineralocorticoid hormone action to the cortical portion. Kidney Int 20:340–347

    Article  CAS  PubMed  Google Scholar 

  45. Stoner LC, Burg MB, Orloff J (1974) Ion transport in cortical collecting tubule, effect of amiloride. Am J Physiol 227: 453–459

    CAS  PubMed  Google Scholar 

  46. Tago K, Warden PH, Schuster VL, Stokes JB (1986) Effects of inhibitors of Cl conductance on Cl self-exchange in rabbit cortical collecting tubule. Am J Physiol 251:F1009–F1017

    CAS  PubMed  Google Scholar 

  47. Van Driessche W, Zeiske W (1980) Ba2+-induced conductance fluctuations of spontaneously fluctuating K+ channels in the apical membrane of frog skin (Rana temporaria). J Membr Biol 56:31–42

    Article  PubMed  Google Scholar 

  48. Wangemann P, Wittner M, Di Stefano A, Englert HC, Lang HJ, Schlatter E, Greger G (1986) Cl-channel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship. Pflügers Arch 407:S128–S141

    Article  CAS  PubMed  Google Scholar 

  49. Zeidel ML, Silva P, Seifter JL (1986) Intracellular pH regulation in rabbit renal medullary collecting ducts. J Clin Invest 77:1682–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. H. Sitte, Homburg, FRG, upon his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, P., Minuth, W.W., Ketteler, M. et al. Ionic conductances of cultured principal cell epithelium of renal collecting duct. Pflugers Arch. 412, 434–441 (1988). https://doi.org/10.1007/BF01907564

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907564

Key words

Navigation