Skip to main content
Log in

The role of the cardiac nerves in the regulation of sodium excretion in conscious dogs

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Conscious, chronically instrumented dogs, maintained on a high sodium intake, were used to investigate whether surgical cardiac denervation impairs the natriuresis associated with left atrial pressure increase produced in three ways: during an increase in left atrial pressure by means of a reversible mitral stenosis (protocol 1); after an i.v. saline load (1.0 ml 0.9%·saline min−1·kg−1 over 60 min) (protocol 2); after an oral saline load (14.5 mmol Na·kg−1 given with the food as an isotonic solution) (protocol 3).

During a reversible mitral stenosis, in intact dogs, urine volume and sodium excretion increased markedly (from 34–145 μl·min−1·kg−1 and from 3–12 μmol·min−1·kg−1); mean arterial pressure increased by an average of 2 kPa (15 mm Hg) and heart rate by 55 b/min; plasma renin activity fell from 0.37–0.21 ng Al·ml−1·h−1. Cardiac denervation eliminated these effects of left atrial distension except for a small increase in heart rate (12 b/min). This indicates that the natriuresis and diuresis during left atrial distension resulted from stimulation of receptors located in the left atrium.

In contrast, during protocol 2 and 3, the same amounts of sodium and water were excreted in the cardiac denervated dogs as compared to the intact dogs. A comparable decrease in plasma renin activity also was observed. — Apparently the presence of the cardiac nerves is not a prerequisite for maintenance of sodium and water homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behrenbeck DW, Reinhardt HW (1967) Untersuchungen an wachen Hunden über die Einstellung der Natriumbilanz. II. Postprandiale Elektrolyt- und Wasserbilanz bei unterschiedlicher Kochsalzzufuhr. Pflügers Arch Ges Physiol 295:280–292

    Google Scholar 

  • Drake AJ, Stubbs J, Noble MIM (1978) Dependence of myocardial blood flow and metabolism on cardiac innervation. Cardiovasc Res 12:69–80

    Google Scholar 

  • Fater DC, Sundet WD, Schultz HD, Goetz KL (1980) Cardiac denervation eliminates the diuretic response elicited by increasing left atrial pressure with a balloon. Fed Proc 39:3592 (Abstract)

    Google Scholar 

  • Gauer OH, Henry JP (1976) Neurohormonal control of plasma volume. Int Rev Physiol Cardiovasc Physiol II 9:145–190

    Google Scholar 

  • Gilmore JP, Daggett WM (1966) Response of the chronic cardiac denervated dog to acute volume expansion. Am J Physiol 210:509–512

    Google Scholar 

  • Goetz KL, Bond GC, Bloxham DD (1975) Atrial receptors and renal function. Physiol Rev 55:157–205

    Google Scholar 

  • Guyton AC (1976) Regulation of arterial pressure: II. The renal-body fluid system for long-term pressure control. The mechanisms of hypertension. In: Guyton AC (ed) Textbook of medical physiology, chapter 22. WB Saunders Comp, Philadelphia London Toronto, pp 279–294

    Google Scholar 

  • Haber E, Koerner T, Page LB, Kliman B, Purnode A (1969) Application of a radioimmunoassay for angiotensin I to the physiologie measurements of plasma renin activity in normal human subjects. J Clin Endocr 29:1349–1355

    Google Scholar 

  • Henry JO, Pearce JW (1956) The possible role of cardiac atrial stretch receptors in the induction of changes in urine flow. J Physiol 131:572–585

    Google Scholar 

  • Johnson JA, Moore WW, Segar WE (1969) Small changes in left atrial pressure and plasma antidiuretic hormone titers in dogs. Am J Physiol 217:210–214

    Google Scholar 

  • Johnson MD, Malvin RL (1977) Stimulation of renal sodium reabsorption by angiotensin II. Am J Physiol 232:F298–306

    Google Scholar 

  • Kaczmarczyk G, Eigenheer F, Gatzka M, Kuhl U, Reinhardt HW (1978) No relation between atrial natriuresis and renal blood flow in conscious dogs. Pflügers Arch 373:49–58

    Google Scholar 

  • Kaczmarczyk G, Mohnhaupt R, Simgen B, Reinhardt HW (1980) Postprandial (pp) volume regulation and renin-angiotensin system (RAS) in conscious dogs. Proc Int Union Physiol Sci 14:0327

    Google Scholar 

  • Kaczmarczyk G, Schimmrich B, Mohnhaupt R, Reinhardt HW (1979) Atrial pressure and postprandial volume regulation in conscious dogs. Pflügers Arch 381:143–150

    Google Scholar 

  • Kaczmarczyk G, Unger V, Mohnhaupt R, Reinhardt HW (1981) Left atrial distension and intrarenal blood flow distribution in conscious dogs. Pflügers Arch 390:44–48

    Google Scholar 

  • Keck W, Brechtelsbauer H, Kramer K (1969) Wasser- und Natriumausscheidung nach isotonen Kochsalz-Infusionen bei wachen Hunden mit verschiedenem Natriumbestand. Pflügers Arch 311:119–130

    Google Scholar 

  • Keck W, Joppich R, v Restorff WD, Finsterer U, Prucksunand P, Brechtelsbauer H, Kramer K (1973) Sodium excretion in conscious and anesthetized dogs after large saline infusions. Pflügers Arch 341:51–62

    Google Scholar 

  • Knox FG, Davis BB, Berliner RW (1967) Effect of chronic cardiac denervation on renal response to saline infusion. Am J Physiol 213:174–178

    Google Scholar 

  • Lydtin H, Hamilton WF (1964) Effect of acute changes in left atrial pressure on urine flow in unanesthetized dogs. Am J Physiol 207:530–536

    Google Scholar 

  • McDonald KM, Rosenthal A, Schrier RW, Galicich J, Lauler DP (1970) Effect of interruption of neutral pathways on renal response to volume expansion. Am J Physiol 218:510–517

    Google Scholar 

  • Reinhardt HW, Behrenbeck DW (1967) Untersuchungen an wachen Hunden über die Einstellung der Natriumbilanz. I. Die Bedeutung des Extracellulärraumes für die Einstellung der Natrium-Tagesbilanz. Pflügers Arch Ges Physiol 295:266–279

    Google Scholar 

  • Reinhardt HW, Eisele R, Kaczmarczyk G, Mohnhaupt R, Oelkers W, Schimmrich B (1980a) The control of sodium excretion by reflexes from the low pressure system independent of adrenal activity. Pflügers Arch 384:171–176

    Google Scholar 

  • Reinhardt HW, Kaczmarczyk G, Eisele R, Eigenheer F, Kuhl U (1977) Left atrial pressure and sodium balance in conscious dogs on a low sodium intake. Pflügers Arch 370:59–66

    Google Scholar 

  • Reinhardt HW, Kaczmarczyk G, Mohnhaupt R, Simgen B (1980b) Atrial natriuresis under the condition of a constant renal perfusion pressure — Experiments on conscious dogs — Pflügers Arch 389:9–15

    Google Scholar 

  • Thoren P (1979) Role of cardiac vagal c-fibers in cardiovascular control. Rev Physiol Biochem Pharmacol 86:1–94

    Google Scholar 

  • Wegener S, Kaczmarczyk G, Schimmrich B, Mohnhaupt R, Reinhardt HW (1978) Suppression of atrial natriuresis after acute and chronic reduction of total body sodium (TBS). Experiments on conscious dogs on a high or a low sodium intake. Pflügers Arch Suppl 377:60

    Google Scholar 

  • Wiberg I, Vaage J, Scott E (1979) Release of prostaglandin-like substances during elevations of left atrial pressure in the cat. Acta Physiol Scand 107:97–103

    Google Scholar 

  • Zehr JE, Hasbargen JA, Kurz KD (1976) Reflex suppression of renin secretion during distension of cardiopulmonary receptors in dogs. Circ Res 38:232–239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaczmarczyk, G., Drake, A., Eisele, R. et al. The role of the cardiac nerves in the regulation of sodium excretion in conscious dogs. Pflugers Arch. 390, 125–130 (1981). https://doi.org/10.1007/BF00590194

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00590194

Key words

Navigation