Skip to main content
Log in

Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

Based on the Hylleraas functional form, the second and third orders of Møller-Plesset perturbation theory are reformulated in terms of arbitrary (e.g., localized) internal orbitals, and atomic orbitals in the virtual space. The results are strictly equivalent to the canonical formulation if no further approximations are introduced. The new formalism permits the extension of the local correlation method to Møller-Plesset theory. It also facilitates the treatment of weak pairs at a lower (e.g., second order) level of theory in CI and coupled cluster methods. Based on our formalism, an MP2 gradient algorithm is outlined which does not require the storage of derivative integrals, integrals with three external MO indices, and, using the method of Handy and Schaefer, the repeated solution of the coupled-perturbed SCF equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartlett RJ, Silver MD (1975) J Chem Phys 62:325; Bartlett RJ (1981) Ann Rev Phys Chem 32:359

    Google Scholar 

  2. Pople JA, Binkley JS, Seeger R (1976) Int J Quantum Chem Symp 10:1

    Google Scholar 

  3. Pople JA, Krishnan R, Schlegel HB, Binkley JS (1979) Int J Quantum Chem Symp 13:225

    Google Scholar 

  4. Pulay P, Saebo S, Meyer W (1980) J Chem Phys 81:1901

    Google Scholar 

  5. Kellö V, Urban M, Noga J, Diercksen GHF (1984) J Am Chem Soc 106:5864

    Google Scholar 

  6. George P, Trachtman M, Brett AM, Bock CW (1977) Int J Quantum Chem 12:61

    Google Scholar 

  7. Pulay P (1983) Chem Phys Lett 100:151

    Google Scholar 

  8. Saebo S, Pulay, P (1985) Chem Phys Lett 113:13

    Google Scholar 

  9. Diner S, Malrieu JP, Claverie P (1969) Theor Chim Acta (Berl.) 13:1, 18

    Google Scholar 

  10. Laidig W, Purvis III GD, Bartlett RJ (1982) Int J Quantum Chem Symp 16:561

    Google Scholar 

  11. Cullen JM, Zerner MC (1982) Int J Quantum Chem 22:497

    Google Scholar 

  12. Amos AT, Musher JI (1971) J Chem Phys 54:2380

    Google Scholar 

  13. Davidson ER (1973) J Chem Phys 57:1999

    Google Scholar 

  14. Kutzelnigg W (1977) In: Schaefer III HF (ed) Methods of electronic structure theory, p 129. Plenum Press, New York

    Google Scholar 

  15. Meyer W (1973) J Chem Phys 58:1017

    Google Scholar 

  16. Ahlrichs R, Lischka H, Staemmler V, Kutzelnigg W (1975) J Chem Phys 62:1225

    Google Scholar 

  17. Dykstra CE, Chiles RA, Garrett MD (1981) J Comp Chem 2:266

    Google Scholar 

  18. Kutzelnigg W (1975) In: Chalvet O, Daudel R, Diner S, Malrieu JP (eds) Localization and delocalization in quantum chemistry, p. 143. Reidel, Boston

    Google Scholar 

  19. Cizek J (1966) J Chem Phys 45:4256

    Google Scholar 

  20. Chiles RA, Dykstra CE (1981) Chem Phys Lett 80:69

    Google Scholar 

  21. Janowski K, Paldus J (1980) Int J Quantum Chem 18:1243

    Google Scholar 

  22. Robb MA (1975) In: Diercksen GHF, Sutcliffe BT, Veillard A (eds) Computational techniques in quantum chemistry and molecular physics, p 435. Reidel, Boston

    Google Scholar 

  23. Kapuy E, Csepes Z, Kozmutza C (1983) Int J Quantum Chem 23:981

    Google Scholar 

  24. Hylleraas EA (1930) Z Phys 65:209

    Google Scholar 

  25. Matsen FA (1981) Int J Quantum Chem Symp 15:163

    Google Scholar 

  26. Meyer W (1976) J Chem Phys 64:2901; Dykstra CE, Schaefer III HF, Meyer W (1976) J Chem Phys 65:2740

    Google Scholar 

  27. Meyer W, private communication; Werner H-J, Reinsch EA (1982) J Chem Phys 76:3144

  28. Ahlrichs R (1979) Computer Phys Commun 17:31

    Google Scholar 

  29. Saunders VR, Lenthe JH van (1983) Mol Phys 48:923

    Google Scholar 

  30. Bartlett RJ, Shavitt I (1977) Chem Phys Lett 50:190

    Google Scholar 

  31. Pulay P (1983) Int J Quantum Chem Symp 17:257; Pulay P, Saebo S (1985) Chem Phys Lett 117:37

    Google Scholar 

  32. Saebø S, Meyer W, Pulay P: to be published

  33. Saebø S, Hamilton T, Pulay P: to be submitted

  34. Pulay P (1983) J Chem Phys 78:6043

    Google Scholar 

  35. Pulay P (1969) Mol Phys 17:197

    Google Scholar 

  36. Jasien PG, Dykstra CE (1985) Int J Quantum Chem 28:411

    Google Scholar 

  37. Handy NC, Schaefer III HF (1984) J Chem Phys 81:5031

    Google Scholar 

  38. Adamowicz L, Laidig WD, Bartlett RJ (1984) Int J Quantum Chem Symp 18:245

    Google Scholar 

  39. Bartlett RJ, Purvis GD (1979) Phys Rev A 20:1313

    Google Scholar 

  40. Nerbant PO, Roos B, Sadlej AJ (1979) Int J Quantum Chem 15:135

    Google Scholar 

  41. Raghavachari K, Pople JA (1981) Int J Quantum Chem 20:1067

    Google Scholar 

  42. Hariharan PC, Pople JA (1973) Theor. Chim Acta (Berl) 28:213

    Google Scholar 

  43. Boys SF (1968) In: Löwdin PO (ed) Quantum theory of atoms, molecules and the solid state, p. 253. Academic Press, New York 1968

    Google Scholar 

  44. Edmiston C, Ruedenberg K (1963) Rev Mod Phys 35:457

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pulay, P., Saebø, S. Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory. Theoret. Chim. Acta 69, 357–368 (1986). https://doi.org/10.1007/BF00526697

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00526697

Key words

Navigation