Skip to main content
Log in

Extended Hartree-Fock (EHF) theory of chemical reactions

III. Projected Møller-Plesset (PMP) perturbation wavefunctions for transition structures of organic reactions

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The triplet-instability analysis of the closed-shell RHF solutions has been carried out in relation to the orbital and spin correlation effects for various transition structures (TS) and reaction intermediates. It is found that the RHF solutions even for cyclic transition states of the Woodward-Hoffmann symmetry-allowed reactions often involve the triplet instability, indicating the crucial role of correlation corrections. The di- and tetra-radical characters for the transition structures are calculated by the projected UHF (PUHF) solutions resulting from the instability. The spin projection is also crucial for the UHF Møller-Plesset (UMP) correlated wavefunctions obtained for the transition structures of 1,3-dipolar, Diels-Alder, ene and related reactions. The relative stability between cyclic and acyclic TS for these reactions is examined at the approximately projected UHF MP2 (APU MP2) level. The former is found to be more favorable than the latter if the correlation correction is taken into account for TS in a well-balanced manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Čižek J, Paldus J (1967) J Chem Phys 47:3976

    Google Scholar 

  2. Yamaguchi K, Fueno T, Fukutome H (1973) Chem Phys Lett 22:461

    Google Scholar 

  3. Bonačič-Koutecký V, Koutecký J (1975) Theor Chim Acta 36:149

    Google Scholar 

  4. Yamaguchi K (1975) Chem Phys Lett 33:330; (1975) 35:230

    Google Scholar 

  5. Dewar MJS, Olivella S, Rzepa HS (1978) J Am Chem Soc 100:5650

    Google Scholar 

  6. Dewar MJS (1984) J Am Chem Soc 106:209

    Google Scholar 

  7. Dewar MJS (1977) Discuss Faraday Soc 62:197

    Google Scholar 

  8. Lluch JM, Bertran J (1979) Tetrahedron 35:2601

    Google Scholar 

  9. Dewar MJS, Pierini AB (1984) J Am Chem Soc 106:203

    Google Scholar 

  10. Houk KN, Lin Y-T, Brown FK (1986) J Am Chem Soc 108:554

    Google Scholar 

  11. Hiberty PC, Ohanessian G, Schlegel HB (1983) J Am Chem Soc 105:719

    Google Scholar 

  12. Yamaguchi K, Yoshioka Y, Fueno T (1977) Chem Phys Lett 46:360

    Google Scholar 

  13. Yamaguchi K, Yoshioka Y, Takatsuka K, Fueno T (1978) Theor Chim Acta 48:185

    Google Scholar 

  14. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab-initio molecular orbital theory. Wiley, New York

    Google Scholar 

  15. Sosa C, Schlegel HB (1986) Int J Quantum Chem 29:1001

    Google Scholar 

  16. Schlegel HB (1986) J Chem Phys 84:4530

    Google Scholar 

  17. Leroy G, Sana M (1976) Tetrahedron 32:1379

    Google Scholar 

  18. Leroy G, Nguyen, M-T, Sana M (1976) Tetrahedron 32:1529

    Google Scholar 

  19. Bernardi F, Bottoni A, Robb MA, Field MJ, Hilger IH, Guest MF (1985) J Chem Soc Chem Commun 1051

  20. Hess BA Jr, Schaad LJ, Pancir J (1985) J Am Chem Soc 107:149

    Google Scholar 

  21. Loncharich RJ, Houk KN: to appear in J Am Chem Soc

  22. Yamaguchi K, Fukui H, Fueno T (1986) Chem Lett 625

  23. Yamaguchi K, Jensen F, Dorigo A, Houk KN: Chem Phys Lett, in press

  24. Wadt WR, Goddard III, WA (1975) J Am Chem Soc 97:3004

    Google Scholar 

  25. Yamaguchi K, Fueno T (1973) Chem Phys Lett 23:471

    Google Scholar 

  26. Schaefer HF (1979) Acc Chem Res 12:288

    Google Scholar 

  27. Komornicki A, Goddard JD, Schaefer III HF (1980) J Am Chem Soc 102:1763

    Google Scholar 

  28. Woodward RB, Hoffmann R (1969) Angew Chem Int Ed 8:781

    Google Scholar 

  29. Yamaguchi K, Yabushita S, Fueno T, Kato S, Morokuma K, Iwata S (1980) Chem Phys Lett 71:563

    Google Scholar 

  30. Hay PJ, Dunning Jr, TH (1977) J Chem Phys 67:2290

    Google Scholar 

  31. Swanson N, Celotta, RJ (1975) Phys Rev Lett 35:783

    Google Scholar 

  32. Buenker RJ, Peyerimhoff SD (1976) Chem Phys 9:75

    Google Scholar 

  33. Yamaguchi K, Fueno T (1976) Chem Phys Lett 38:47

    Google Scholar 

  34. Paldus J, Veilard A (1978) Mol Phys 35:445

    Google Scholar 

  35. Kikuchi O (1980) Chem Phys Lett 72:487

    Google Scholar 

  36. McLean AD, Lengsfield III, BH, Pacansky, J, Ellinger Y (1985) J Chem Phys 83:3567

    Google Scholar 

  37. Osamura Y, Kato S, Morokuma K, Feller D, Davidson ER, Boden WT (1984) J Am Chem Soc 106:3362

    Google Scholar 

  38. Yamaguchi et al., to be published

  39. Jensen F, Houk KN: J Am Chem Soc, in press

  40. Bernardi F, Robb MA, Schlegel HB, Tonachini G (1984) J Am Chem Soc 106:1198

    Google Scholar 

  41. Hottokka M, Roos B, Siegbahn P (1983) J Am Chem Soc 105:5263

    Google Scholar 

  42. Huisgen R (1963) Angew Chem Int Ed 2:565, 633

    Google Scholar 

  43. Townshend RF, Ramunni G, Segel G, Hehre WJ, Salem L (1976) J Am Chem Soc 98:2190

    Google Scholar 

  44. Rowley D, Stein H (1951) Discuss Faraday Soc 10:198

    Google Scholar 

  45. Uchiyama M, Tomioka T, Amano (1964) J Phys Chem 68:1878

    Google Scholar 

  46. Thiel W (1981) J Am Chem Soc 103:1413

    Google Scholar 

  47. Yamaguchi K (1985) In: Frimer AA (ed) Singlet oxygen, vol III. CRC Press, Boca Raton, FL

    Google Scholar 

  48. Yamaguchi K, Yabushita S, Fueno T (1981) Chem Phys Lett 78:566

    Google Scholar 

  49. Kahn SD, Hehre WJ, Pople JA (1987) J Am Chem Soc 109:1871

    Google Scholar 

  50. Amos AT, Hall GG (1961) Proc Roy Soc A263:483

    Google Scholar 

  51. Yamaguchi K, Ohta K, Fueno T (1977) Chem Phys Lett 50:266

    Google Scholar 

  52. Yamaguchi K, Iwata S (1980) Chem Phys Lett 76:375

    Google Scholar 

  53. Yamaguchi K (1980) Int J Quantum Chem S14:269

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor J. Koutecký on the occassion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, K., Takahara, Y., Fueno, T. et al. Extended Hartree-Fock (EHF) theory of chemical reactions. Theoret. Chim. Acta 73, 337–364 (1988). https://doi.org/10.1007/BF00527740

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00527740

Key words

Navigation