Skip to main content
Log in

On the role of parallel architecture supercomputers in time-dependent approaches to quantum scattering

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

Results of our initial study of the use of parallel architecture super-computers in solving time-dependent quantum scattering equations are reported. The specific equations solved are obtained from the time-dependent Lippmann-Schwinger integral equation by means of a quadrature approximation to the time integral. This leads to a modified Cayley transform algorithm in which the primary computational step is a matrix-vector multiplication. Implementation has been carried out both for the MasPar MP-1 and the NCUBE 6400 parallel machines. The codes are written in a modular form that greatly facilitates porting from one machine architecture to another. Both parallel machines prove to be more powerful for this application than the serial architecture VAX 8650. Specific analysis of machine performance is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See the recent work on gas phase reactive scattering: Time-independent, non-variational methods include Kuppermann A, Hipes PG (1986) J Chem Phys 84:5962 and (1987) Chem Phys Lett 133:1; Webster F, Light JC (1986) J Chem Phys 85:4744; (1989)ibid. 90:265 and 300; Haug K, Schwenke DW, Shima Y, Truhlar DG, Zhang JZH, Kouri DJ (1986) J Phys Chem 90:6757 and Zhang JZH, Kouri DJ, Haug K, Schwenke DW, Shima Y, Truhlar DG (1988) J Chem Phys 88:2492; Parker GA, Pack RT, Archer BJ, Walker RB (1987) Chem Phys Lett 137:564 and Pack RT, Parker GA (1987) J Chem Phys 87:3888; Baer M, Shima Y (1987) Phys Rev A35: 5252 and Baer M (1987) J Phys Chem 91:5846 and (1989) J Chem Phys 90:3043; Linderberg J, Vessel B (1987) Int J Quant Chem 31:65 and Linderberg J, Padkjaer SB, Ohrn Y, Vessel B (1989) J Chem Phys 90:6254; Schatz GC (1988) Chem Phys Lett 150:92 and (1988) 151:409; Launay JM, Lepetit D (1988) Chem Phys Lett 151:287 and (1988) 152:23 and Launay JM, Le Dourneff M (1989)ibid. 163:178.

    Google Scholar 

  2. Time-independent variational methods include Schwenke DW, Haug K, Truhlar DG, Sun Y, Zhang JZH, Kouri DJ (1987) J Phys Chem 91:6080 and Schwenke DW, Haug K, Zhao M, Truhlar DG, Sun Y, Zhang JZH, Kouri DJ (1988)ibid. 92:3202; Zhang JZH, Miller WH (1987) Chem Phys Lett 140:329 and (1988) J Chem Phys 88:449; Manolopoulos D, Wyatt RE (1988) Chem Phys Lett 152:23 and (1990) J Chem Phys 92:810.

    Google Scholar 

  3. Time-dependent studies have been reported by Neuhauser D, Baer M, Judson RS, Kouri DJ (1990) J Chem Phys 93:312 and Judson RS, Kouri DJ, Neuhauser D, Baer M (1990) Phys Rev A42:351

    Google Scholar 

  4. Some recent reviews include: for molecule-surface scattering, Gerber RB, Kosloff R, Berman M (1986) Computer Phys Repts 5:59;

    Google Scholar 

  5. for colinear gas phase reactive scattering, Mohan V, Sathymurthy N (1988) Comp Phys Repts 7:213; and

    Google Scholar 

  6. a general review by Kosloff R (1988) J Phys Chem 92:2087

    Google Scholar 

  7. Mazur J, Rubin RJ (1959) J Chem Phys 31:1395

    Google Scholar 

  8. McCullough EA, Wyatt RE (1971) J Chem Phys 54:3578 and 3592

    Google Scholar 

  9. Zubert Ch, Kamal T, Zulike L (1975) Chem Phys Lett 36:396

    Google Scholar 

  10. Heller EJ (1975) J Chem Phys 62:1544; (1976) 65:4979; Kulander KC, Heller EJ (1978)ibid. 69:2439; Drolshagen G, Heller EJ (1983)ibid. 79:2072

    Google Scholar 

  11. Askar A, Cakmak AS (1978) J Chem Phys 68:2794

    Google Scholar 

  12. Kulander KC (1978) J Chem Phys 69:5064; Gray JC, Fraser GA, Truhlar DG, Kulander KC (1980)ibid. 73:5726; Orel AE, Kulander KC (1988) Chem Phys Lett 146:428

    Google Scholar 

  13. LeForestier C, Bergerson G, Hiberty PC (1981) Chem Phys Lett 84:385 (see also LeForestier C (1984) Chem Phys 87:241)

    Google Scholar 

  14. Agrawal PM, Raff LM (1982) J Chem Phys 77:3946

    Google Scholar 

  15. Heller EJ, Sunberg RL, Tannor DJ (1982) J Phys Chem 86:1822

    Google Scholar 

  16. Feit MD, Fleck JA (1983) J Chem Phys 79:301; (1984) 80:2578

    Google Scholar 

  17. Kosloff D, Kosloff R (1983) J Comput Phys 52:35; (1983) J Chem Phys 79:1823

    Google Scholar 

  18. LeForestier C (1984) Chem Phys 87:241; and in Clary DC (ed) Theory of chemical reaction dynamics (Reidel, Dordrecht, 1986) p 235; LeQuere F, LeForstier C (1990) J Chem Phys 92:247

    Google Scholar 

  19. Drolshagen G, Heller EJ (1983) J Chem Phys 79:2072

    Google Scholar 

  20. Tal-Ezer H, Kosloff R (1984) J Chem Phys 81:3967

    Google Scholar 

  21. Kosloff R, Cerjan C (1984) J Chem Phys 81:3722

    Google Scholar 

  22. Yinnon AT, Kosloff R, Gerber RB (1984) Surf Sci 148:148; Gerber RB, Yinnon AT, Kosloff R (1984) Chem Phys Lett 105:523

    Google Scholar 

  23. Imre D, Kinsey J, Sinha A, Krenos J (1984) J Phys Chem 88:395

    Google Scholar 

  24. Skodje RT (1984) Chem Phys Lett 109:227

    Google Scholar 

  25. Mowrey RC, Kouri DJ (1985) Chem Phys Lett 119:285

    Google Scholar 

  26. Jackson B, Metiu H (1985) J Chem Phys 83:1952; Sawada S, Heather R, Jackson B, Metiu H (1985) J Chem Phys 83:3009

    Google Scholar 

  27. Zhang ZH, Kouri DJ (1986) Phys Rev A34:2678

    Google Scholar 

  28. Jackson B, Metiu H (1986) J Chem Phys 84:3535; (1986) J Chem Phys 85:4192; (1987) J Chem Phys 86:1026

    Google Scholar 

  29. Mowrey RC, Kouri DJ (1986) J Chem Phys 84:6466

    Google Scholar 

  30. Park TJ, Light JC (1986) J Chem Phys 85:5870

    Google Scholar 

  31. Mohan V, Sathymurthy N (1986) Curr Sci 55:115; Thareja S, Sathymurthy N (1987) J Phys Chem 91:1970

    Google Scholar 

  32. Mowrey RC, Kouri DJ (1987) J Chem Phys 86:6140

    Google Scholar 

  33. Heather R, Metiu H (1987) J Chem Phys 86:5009; (1989) 90:6116; (1989) 91:1596

    Google Scholar 

  34. Kouri DJ, Mowrey RC (1987) J Chem Phys 87:2087

    Google Scholar 

  35. Sun Y, Mowrey RC, Kouri DJ (1987) J Chem Phys 87:339

    Google Scholar 

  36. Mowrey RC, Bowen HF, Kouri DJ (1987) J Chem Phys 86:2441; Mowrey RC, Bowen HF, Yinnon T, Gerber RB (1988) J Chem Phys 89:3925 and in preparation

    Google Scholar 

  37. Huber D, Heller EJ (1987) J Chem Phys 87:5302; (1988) 89:4752; Huber D, Heller EJ, Littejohn RG (1987) J Chem Phys 87:5302; Huber D, Ling S, Imre DG, Heller EJ (1989) J Chem Phys 90:7317

    Google Scholar 

  38. Sun Y, Kouri DJ (1988) J Chem Phys 89:2958

    Google Scholar 

  39. Jackson B (1988) J Chem Phys 88:1383; (1988) 89:2473; (1991) Computer Phys Commun 63:154

    Google Scholar 

  40. Chaseman D, Tannor DJ, Imre DG (1988) J Chem Phys 89:6667

    Google Scholar 

  41. Williams SO, Imre DJ (1988) J Phys Chem 92:6648

    Google Scholar 

  42. Tannor DJ, Rice SA (1988) Adv Chem Phys 70:441

    Google Scholar 

  43. Sun Y, Judson RS, Kouri DJ (1989) J Chem Phys 90:241; Sun Y, Kouri DJ, Schwenke DW, Truhlar DG (1991) Computer Phys Commun 63:51

    Google Scholar 

  44. Neuhauser D, Baer M (1989) J Chem Phys 90:4351 and (1989) J Phys Chem 93:2872; (1989) J Chem Phys 91:4651

    Google Scholar 

  45. Neuhauser D, Baer M, Judson RS, Kouri DJ (1989) J Chem Phys 90:5882 and (1990) 93:312; Comput Phys Comm 63:460

    Google Scholar 

  46. Jiang X-P, Heather R, Metiu H (1989) J Chem Phys 90:2555

    Google Scholar 

  47. Jacon M, Atabek O, LeForestier C (1989) J Chem Phys 91:1585

    Google Scholar 

  48. Zhang J, Imre DG (1989) J Chem Phys 90:1666

    Google Scholar 

  49. Dixon RN (1989) Mol Phys 68:263

    Google Scholar 

  50. Judson RS, Kouri DJ, Neuhauser D, Baer M (1990) Phys Rev A42:351

    Google Scholar 

  51. Zhang JZH (1989) Chem Phys Lett 160:417 and (1990) J Chem Phys 92:324

    Google Scholar 

  52. Hoffman DK, Sharafeddin O, Judson RS, Kouri DJ (1990) J Chem Phys 92:4167

    Google Scholar 

  53. Das S, Tannor DJ (1990) J Chem Phys 92:3403

    Google Scholar 

  54. Sharafeddin OA, Kouri DJ, Judson RS, Hoffman DK (1990) J Chem Phys 93:5580

    Google Scholar 

  55. Judson RS, McGarrah DB, Sharafeddin OA, Kouri DJ, Hoffman DK (1991) J Chem Phys 94:3577

    Google Scholar 

  56. Neuhauser D, Judson RS J Chem Phys (submitted)

  57. Neuhauser D, Judson RS, Baer M, Kouri DJ (1991) Chem Phys Lett 176:546

    Google Scholar 

  58. Sharafeddin OA, Bowen HF, Kouri DJ, Hoffman DK J Comput Phys (in press)

  59. Viswanathan R, Shi S, Villalonga E, Rabitz H (1989) J Chem Phys 91:2333

    Google Scholar 

  60. Neuhauser D J Chem Phys (in press)

  61. Founargiotakis M, Light JC (1990) J Chem Phys 93:633

    Google Scholar 

  62. Sharafeddin OA, Kouri DJ, Judson RS, Hoffman DK (unpublished)

  63. Hirschfelder JO, Wigner EP (1935) Proc Natl Acad Sci (USA) 21:113; Curtiss CF, Hirschfelder JO, Adler FT (1950) J Chem Phys 18:1638; Curtiss CF (1953)ibid. 21:1199; Kouri DJ, Curtiss CF (1966)ibid. 44:2120; Curtiss CF (1968)ibid. 48:1725; Thorson WR (1965)ibid. 42:3878; Pack RT, Hirschfelder JO (1968)ibid. 49:4009; Lawley KP, Ross J (1965)ibid. 43:2930, 2943; Jacob M, Wick GC (1959) Ann Phys (NY) 7:404; Pack RT (1974) J Chem Phys 60:633; McGuire P, Kouri DJ (1974) 60:2499; Klar H (1973) J Phys B6:2139; Tamir M, Shapiro M (1975) Chem Phys Lett 31:166; Kouri DJ, Heil TG, Shimoni Y (1976) J Chem Phys 65:226

    Google Scholar 

  64. Carter M, Nayer N, Gustafson J, Hoffman DK, Sharafeddin OA, Kouri DJ (to be published)

  65. Hoffman DK, Ma X, Kouri DJ (in preparation) J Chem Phys

Download references

Author information

Authors and Affiliations

Authors

Additional information

Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. 2-7405-ENG-82. This research was supported by the Division of Chemical Sciences and Applied Mathematical Sciences, Office of Basic Energy Sciences

R.A. Welch Predoctoral Fellow under R.A. Welch Foundation Grant E-608

Supported in part under National Science Foundation Grant CHE89-07429

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, D.K., Sharafeddin, O.A., Kouri, D.J. et al. On the role of parallel architecture supercomputers in time-dependent approaches to quantum scattering. Theoret. Chim. Acta 79, 297–311 (1991). https://doi.org/10.1007/BF01113698

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113698

Key words

Navigation