Skip to main content
Log in

Fock-space coupled-cluster method

A study of the electronic spectra of model π-electron systems

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

A generalization of the single-reference coupled-cluster method, employing the algebraic properties of the fermionic Fock space, is presented. This Fock-space coupled-cluster (FSCC) method is capable of providing not only the ground-state energy of anN-electron system, but also an important fraction of system's excitation spectrum, including ionization potentials, electron affinities, and excitation energies corresponding toN-electron singlet and triplet states. The FSCC method is applied to study the electronic spectra corresponding to the Pariser-Parr-Pople model of butadiene, hexatriene, and benzene, with the full configuration-interaction results taken as the reference. The problem of intruder states is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coester F (1958) Nucl Phys 7:421;

    Google Scholar 

  2. Coester F, Kümmel H (1960) ibid 17:477

    Google Scholar 

  3. Čižek J (1966) J Chem Phys 45:4256

    Google Scholar 

  4. idem (1969) Advan Chem Phys 14:35;

    Google Scholar 

  5. Paldus J, Čižek J, Shavitt I (1972) Phys Rev A 5:50

    Google Scholar 

  6. Pople JA, Krishnan R, Schlegel HB, Binkley JS (1978) Int J Quantum Chem 14:545;

    Google Scholar 

  7. Bartlett RJ, Purvis GD (1978) ibid 14:561;

    Google Scholar 

  8. Taylor PR, Bacskay GB, Hurley AC, Hush NS (1978) J Chem Phys 69:1971

    Google Scholar 

  9. Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910;

    Google Scholar 

  10. Noga J, Bartlett RJ (1987) ibid 86:7041, idem (1988) ibid 89:3401 (E);

    Google Scholar 

  11. Bartlett RJ (1981) Ann Rev Phys Chem 32:359, and references therein;

    Google Scholar 

  12. idem (1989) J Phys Chem 93:1697

    Google Scholar 

  13. Jeziorski B, Paldus J (1989) J Chem Phys 90:2714

    Google Scholar 

  14. Coester F (1968) The ground state of homogeneous nuclear matter and the foundation of the nuclear shell model. In: Mahanthappa KT, Brittin WE (eds) Lectures in Theoretical Physics, vol. 11B, Gordon and Breach, New York, pp 157–186

    Google Scholar 

  15. Offermann R, Ey W, Kümmel H (1976) Nucl Phys A273:349;

    Google Scholar 

  16. Offermann R (1976) ibid A273:368;

    Google Scholar 

  17. Ey W (1978) ibid A296:189

    Google Scholar 

  18. Mukherjee D, Moitra RK, Mukhopadhyay A (1977) Mol Phys 33:955;

    Google Scholar 

  19. idem (1977) Ind J Pure Appl 15:613;

    Google Scholar 

  20. Mukhopadhyay A, Moitra RK, Mukherjee D (1979) J Phys B 12:1;

    Google Scholar 

  21. Mukherjee D (1979) Pramana 12:203;

    Google Scholar 

  22. Haque A, Mukherjee D (1984) J Chem Phys 80:5058;

    Google Scholar 

  23. Pal S, Prasad MD, Mukherjee D (1984) Theor Chim Acta 66:311;

    Google Scholar 

  24. Sinha D, Mukhopadhyay S, Prasad MD, Mukherjee D (1986) Chem Phys Lett 125:213;

    Google Scholar 

  25. Sinha D, Mukhopadhyay S, Mukherjee D (1986) ibid 129:369;

    Google Scholar 

  26. Sinha D, Mukhopadhyay SK, Chaudhuri R, Mukherjee D (1989) ibid 154:544;

    Google Scholar 

  27. Chaudhuri R, Mukhopadhyay D, Jr, Mukherjee D (1989) ibid 162:393

    Google Scholar 

  28. Lindgren I (1978) Int J Quantum Chem S12:33;

    Google Scholar 

  29. Salomonson S, Lindgren I, Mårtensson AM (1980) Phys Scr 21:351;

    Google Scholar 

  30. Lindgren I, Morrison J (1982) Atomic Many-Body Theory, Springer, Berlin

    Google Scholar 

  31. Haque A, Kaldor U (1985) Chem Phys Lett 117:347;

    Google Scholar 

  32. idem (1985) ibid 120:261;

    Google Scholar 

  33. idem (1986) Int J Quantum Chem 29:245;

    Google Scholar 

  34. Kaldor U, Haque A (1986) Chem Phys Lett 128:45;

    Google Scholar 

  35. Kaldor U (1986) Int J Quantum Chem S20:445;

    Google Scholar 

  36. idem (1987) J Comput Chem 8:448;

    Google Scholar 

  37. idem (1987) J Chem Phys 87:467, 4693;

    Google Scholar 

  38. idem (1988) Phys Rev A 38:6013;

    PubMed  Google Scholar 

  39. Ben-Shlomo S, Kaldor U (1988) J Chem Phys 89:956;

    Google Scholar 

  40. Kaldor U (1989) Applications of the open-shell coupled-cluster method. In: Mukherjee D (ed) Lecture Notes in Chemistry, vol. 50, Springer, Berlin, pp. 155–164;

    Google Scholar 

  41. idem (1989) Atomic and molecular applications of the multireference coupled-cluster method. In: Kaldor U (ed) Lecture Notes in Chemistry, vol. 52, Springer, Berlin pp 199–213;

    Google Scholar 

  42. idem (1990) Chem Phys 140:1;

    Google Scholar 

  43. Ben-Shlomo SB, Kaldor U (1990) J Chem Phys 92:3680;

    Google Scholar 

  44. Kaldor U (1990) Int J Quantum Chem S24:291

    Google Scholar 

  45. Pal S, Rittby M, Bartlett RJ, Sinha D, Mukherjee D (1987) Chem Phys Lett 137:273; idem (1987) ibid 142:575 (E)

    Google Scholar 

  46. idem (1988) J Chem Phys 88:4357;

    Google Scholar 

  47. Rittby M, Pal S, Bartlett RJ (1989) J Chem Phys 90:3214;

    Google Scholar 

  48. Mattie R, Rittby M, Bartlett RJ, Pal S (1989) Applications of multi-reference coupled-cluster theory. In: Mukherjee D (ed) Lecture Notes in Chemistry, vol. 50, Springer, Berlin, pp 143–153;

    Google Scholar 

  49. Pal S, Rittby M, Bartlett RJ (1989) Chem Phys Lett 160:212

    Google Scholar 

  50. Jeziorski B, Monkhorst HJ (1981) Phys Rev A 24:1668

    Google Scholar 

  51. Laidig WD, Bartlett RJ (1984) Chem Phys Lett 104:424

    Google Scholar 

  52. Meissner L, Jankowski K, Wasilewski J (1988) Int J Quantum Chem 34:535

    Google Scholar 

  53. Jeziorski B, Paldus J (1988) J Chem Phys 88:5673;

    Google Scholar 

  54. Paldus J, Pylypow L, Jeziorski B (1989) Spin-adapted multi-reference coupled cluster formalism including non-linear terms and its application to the H4 model system. In: Kaldor U (ed) Lecture Notes in Chemistry, vol. 52, Springer, Berlin, pp 151–170.

    Google Scholar 

  55. Meissner L, Kucharski SA, Bartlett RJ (1989) J Chem Phys 91:6187;

    Google Scholar 

  56. Meissner L, Bartlett RJ (1990) ibid 92:561

    Google Scholar 

  57. Mukhopadhyay D, Jr, Mukherjee D (1989) chem. Phys. Lett. 163:171

    Google Scholar 

  58. Fukutome H (1981) Prog Theor Phys 65:809;

    Google Scholar 

  59. Paldus J, Sarma CR (1985) J Chem Phys 83:5135

    Google Scholar 

  60. Paldus J, Čižek J (1975) Adv Quantum Chem 9:105

    Google Scholar 

  61. Goldstone J (1957) Proc Roy Soc (London) A 239:267;

    Google Scholar 

  62. Hugenholtz NM (1957) Physica 23:481;

    Google Scholar 

  63. Hubbard J (1957) Proc Roy Soc (London) A 240:539

    Google Scholar 

  64. Mukherjee D (1986) Proc Ind Acad Sci 96:145;

    Google Scholar 

  65. idem (1986) Chem Phys Lett 125:207;

    Google Scholar 

  66. idem (1986) Int J Quantum Chem S20:409

    Google Scholar 

  67. Lindgren I, Mukherjee D (1987) Phys Rep 151:93;

    Google Scholar 

  68. Kutzelnigg W, Mukherjee D, Koch S (1987) J Chem Phys 87:5902;

    Google Scholar 

  69. Mukherjee D, Kutzelnigg W, Koch S (1987) ibid 87:5911;

    Google Scholar 

  70. Chaudhuri R, Mukherjee D, Prasad MD (1989) Separability problem in general many electron systems. In: Mukherjee D (ed) Lecture Notes in Chemistry, vol. 50, Springer, Berlin, pp 3–33;

    Google Scholar 

  71. Chaudhuri R, Sinha D, Mukherjee D (1989) Chem Phys Lett 163:165

    Google Scholar 

  72. Stolarczyk LZ, Monkhorst HJ (1985) Phys Rev A 32:725;

    Google Scholar 

  73. idem (1985) ibid 32:743;

    Google Scholar 

  74. idem (1988) ibid 37:1908;

    Google Scholar 

  75. idem (1988) ibid 37:1926

    PubMed  Google Scholar 

  76. Bogoliubov NN (1958) Zh Eksp Teor Fiz 34:58 [(1958) Sov Phys -JETP 7:41];

    Google Scholar 

  77. Valatin JG (1958) Nuovo Cimento 7:843

    Google Scholar 

  78. Fukutome H, Yamamura M, Nishiyama S (1977) Prog Theor Phys 57:1554

    Google Scholar 

  79. Kutzelnigg W (1981) Chem Phys Lett 83:156;

    Google Scholar 

  80. idem (1982) J Chem Phys 77:3081;

    Google Scholar 

  81. Kutzelnigg W, Koch S (1983) ibid 79:4315;

    Google Scholar 

  82. Kutzelnigg W (1984) ibid 80:822;

    Google Scholar 

  83. idem (1985) ibid 82:4166;

    Google Scholar 

  84. idem (1989) Quantum chemistry in Fock space. In: Mukherjee D (ed) Lecture Notes in Chemistry, vol. 50, Springer, Berlin, pp 35–67

    Google Scholar 

  85. Stolarczyk LZ, Monkhorst HJ (1989) Quasiparticles in extended systems — a coupled-cluster approach. In: Mukherjee D (ed) Lecture Notes in Chemistry, vol. 50, Springer, Berlin, pp 261–279

    Google Scholar 

  86. Koch S, Mukherjee D (1988) Chem Phys Lett 145:321;

    Google Scholar 

  87. Koch S (1989) Atomic and molecular application of effective Hamiltonian formalism in complete and incomplete model spaces. In: Mukherjee D (ed) Lecture Notes in Chemistry, vol. 50, Springer, Berlin, pp 123–142

    Google Scholar 

  88. Pariser R, Parr RG (1953) J Chem Phys 21:466, 767;

    Google Scholar 

  89. Pople JA (1953) Trans Faraday Soc 49:1375

    Google Scholar 

  90. Schucan TH, Weidenmüller HA (1972) Ann Phys (NY) 73:108;

    Google Scholar 

  91. idem (1973) ibid 76:483

    Google Scholar 

  92. Bohr A, Mottelson B (1969) Nuclear Structure, vol. 1, Benjamin, New York, pp 273–274

    Google Scholar 

  93. Abrikosov AA, Gorkov LP, Dzyaloshinski IE (1975) Methods of Quantum Field Theory in Statistical Physics, Dover, New York, pp 15–18

    Google Scholar 

  94. Chiles RA, Dykstra CE (1981) J Chem Phys 74:4544;

    Google Scholar 

  95. Kvasiníka V, Laurinc V, Biskupií (1982) Phys Rep 90:159;

    Google Scholar 

  96. Stolarczyk LZ, Monkhorst HJ (1984) Int J Quantum Chem S18:267, and references therein;

    Google Scholar 

  97. Handy N, Pople JA, Head-Gordon M, Raghavachari K, Trucks G (1989) Chem Phys Lett 164:185; Raghavachari K, Pople JA, Replogle ES, Head-Gordon M (1990) J Phys Chem 94:5579

    Google Scholar 

  98. Čižek J, Paldus J, Šroubková L (1969) Int J Quantum Chem 3:149;

    Google Scholar 

  99. Paldus J, Boyle MJ (1982) ibid 22:1281;

    Google Scholar 

  100. Paldus J, Takahashi M, Cho RWH (1984) Phys Rev B 30:4267;

    Google Scholar 

  101. Takahashi M, Paldus J (1985) ibid 31:5121;

    Google Scholar 

  102. Piecuch P, Zarrabian S, Paldus J, Čižek J (1990) ibid 42:3351

    Google Scholar 

  103. Schulten K, Karplus M (1972) Chem Phys Lett 14:305;

    Google Scholar 

  104. Schulten K, Ohmine I, Karplus M (1976) J Chem Phys 64:4422;

    Google Scholar 

  105. Ohmine I, Karplus M, Schulten K (1978) ibid 68:2298

    Google Scholar 

  106. Mataga N, Nishimoto K (1957) Z Phys Chem (Frankfurt) 13:140

    Google Scholar 

  107. Koutecký J, Čižek J, Dubský J, hlavatý K (1964) Theor Chim Acta 2:462;

    Google Scholar 

  108. Koutecký J, Hlavatý, Hochmann P (1965) Theor Chim Acta 3:341;

    Google Scholar 

  109. Koutecký J (1967) J Chem Phys 47:1501

    Google Scholar 

  110. Ohno K (1964) Theor Chim Acta 2:219

    Google Scholar 

  111. Paldus J (1974) J Chem Phys 61:5321;

    Google Scholar 

  112. idem (1975) Int J Quantum Chem S9:165;

    Google Scholar 

  113. idem (1976) Many-electron correlation problem. A group theoretical approach. In: Eyring H, Henderson D (eds) Theoretical Chemistry, Advances and Perspectives, vol. 2, Academic Press, New York, pp 131–290

    Google Scholar 

  114. Koopmans T (1934) Physica (Utrecht) 1:104

    Google Scholar 

  115. Mulliken RS (1949) J Chim Phys 46:497

    Google Scholar 

  116. Sinanoglu O (1969) Adv Chem Phys 14:237

    Google Scholar 

  117. Coulson CA, Rushbrooke GS (1940) Proc Cambridge Philos Soc 36:193;

    Google Scholar 

  118. McLachlan AD (1959) Mol Phys 2:271;

    Google Scholar 

  119. Koutecký J, Paldus J, Čižek J (1985) Chem Phys 83:1722;

    Google Scholar 

  120. ŽZivkovií T (1987), Int J Quantum Chem 32:313, and references therein

    Google Scholar 

  121. Tamm I (1945) J Phys (USSR) 9:449;

    Google Scholar 

  122. Dancoff SM (1950) Phys Rev 78:382

    Google Scholar 

  123. Sano T, I'Haya YJ (1978) J Chem Phys 69:3197

    Google Scholar 

  124. Hose G, Kaldor U (1979) J Phys B 12:3827

    Google Scholar 

  125. Čižek J, Paldus J, Hubač I (1974) Int J Quantum Chem 8:951;

    Google Scholar 

  126. Paldus J, Čižek J, Hubač I (1974) Int J Quantum Chem S8:293;

    Google Scholar 

  127. Čižek J, Pellégatti A, Paldus J (1975) Int J Quantum Chem 9:987

    Google Scholar 

  128. Hudson BS, Kohler BE, Schulten K (1982). In: Lim EC (ed) Excited States, vol 6, Academic, New York, pp 1–91

    Google Scholar 

  129. McDiarmid R (1986) Int J Quantum Chem 29:875

    Google Scholar 

  130. Chadwick RR, Gerrity DP, Hudson BS (1985) Chem Phys Lett 115:24;

    Google Scholar 

  131. Buma WJ, Kohler BE, Song K (1990) J Chem Phys 92:4622

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barysz, M., Monkhorst, H.J. & Stolarczyk, L.Z. Fock-space coupled-cluster method. Theoret. Chim. Acta 80, 483–507 (1991). https://doi.org/10.1007/BF01119667

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01119667

Key words

Navigation