Skip to main content
Log in

On the classification of simple vertex operator algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Inspired by a recent work of Frenkel-Zhu, we study a class of (pre-)vertex operator algebras (voa) associated to the self-dual Lie algebras. Based on a few elementary structural results we propose thatV, the category of Z+-graded prevoasV in whichV[0] is one-dimensional, is a proper setting in which to study and classify simple objects. The categoryV is organized into what we call the minimalk th types. We introduce a functor Γ—which we call the Frenkel-Lepowsky-Meurman functor—that attaches to each object inV a Lie algebra. This is a key idea which leads us to a (relative) classification of thesimple minimal first type. We then study the set of all Virasoro structures on a fixed minimal first typeV, and show that they are in turn classified by the orbits of the automorphism group Aut(Γ(V)) in cent(Γ(V)). Many new examples of voas are given. Finally, we introduce a generalized Kac-Casimir operator and give a simple proof of the irreducibility of the prolongation modules over the affine Lie algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belavin, A., Polyakov, A.M., Zamolodchikov, A.A.: Infinite conformal symmetry in two dimensional quantum field theory. Nucl. Phys.B24a, 333 (1984)

    Google Scholar 

  2. Borcherds, R.E.: Vertex operator algebras, Kac-Moody algebras and the Monster. Proc. Natl. Acad. Sci. USA.83, 3068 (1986)

    Google Scholar 

  3. Drinfel'd, V.G.: Quantum Groups. ICM Proceedings, Berkeley, California, USA 798 (1986)

  4. Drinfel'd, V.G.: Quasi-Hopf algebras. Leningrad Math. J., vol.1, no 5, 1419 (1989)

    Google Scholar 

  5. Feigin, B.L., Frenkel, E.: Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras. Kyoto Univ. preprint, RIMS-796

  6. Feigin, B.L., Fuchs, D.B.: Representations of the Virasoro Algebra. New York: Gordon and Breach, 1989

    Google Scholar 

  7. Feingold, A., Frenkel, I., Ries, J.: Spinor construction of vertex operator algebras, triality and E (1)8 . Contemp. Math., to appear

  8. Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Yale-Rutgers preprint, Dept. of Math., 1989

  9. Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex Operator Algebra and the Monster. New York: Academic Press, 1988

    Google Scholar 

  10. Frenkel, I.B., Reshetikhin, N.Yu.: Quantum affine algebras and holonomic difference equations. Preprint 1992

  11. Frenkel, I.B., Zhu, Y.: Vertex Operator Algebras associated to affine Lie algebras and the Virasoro algebra. Duke Math J.66, 123 (1992)

    Google Scholar 

  12. Friedan, D., Shenker, S.: The analytic geometry of two-dimensional conformal field theory. Nucl. Phys.B281, 509 (1987)

    Google Scholar 

  13. Gepner, D., Witten, E.: String theory on group manifolds. Nucl. Phys.B278, 493–549 (1986)

    Google Scholar 

  14. Goddard, P., Schwimmer, A.: Factoring out free fermions and superconformal algebras. Phys. Letts.214B, 209 (1988)

    Google Scholar 

  15. Huang, Y.-Z.: On the geometric interpretation of vertex operator algebras. Rutgers Thesis, Dept. of Math., 1991

  16. Huang, Y.-Z., Lepowsky, J.: Toward a theory of tensor products for representations of a vertex operator algebra. In: Proc. XXth International Conference on Differential Geometric Methods in Theoretical Physics, New York, 1991, ed. S. Catto and A. Rocha, Singapore: World Scientific, 1992

    Google Scholar 

  17. Kac, V.: Infinite dimensional Lie algebras. Boston: Birkhäuser, 1983

    Google Scholar 

  18. Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess-Zumino model in two dimensions. Nucl. Phys.B247, 83–103 (1984)

    Google Scholar 

  19. Lepowsky, J.: Generalized Verma modules, loop space cohomology and MacDonald-type identities. Ann. Scient. Ecole Norm. Sup., 169 (1979)

  20. Lian, B.H., Zuckerman, G.J.: New Selection Rules and Physical State in 2D gravity; Conformal Guage. Phys. Lett B,254, No. 3,4, 417 (1991); 2D gravity with c=1 matter. Phys. Lett.266, 21 (1991)

    Google Scholar 

  21. Lian, B.H., Zuckerman, G.J.: An application of infinite dimensional Lie theory to semisimple Lie groups. Lecture presented at a conference on Symmetric Spaces and Representations of Real Lie Groups, University of Maryland, May 3–5, 1991

  22. Lian, B.H., Zuckerman, G.J.: BSRT cohomology and non-compact coset model. Lecture presented at the 20th Conference on Differential Geometric Methods in Theoretical Physics, Baruch College, June 3–7, 1991

  23. Medina, A., Revoy, Ph.: Caractérisation des groupes de Lie ayant une pseudo-métrique biinvariante. Applications. Seminaire Sub-Rhodanien de Geometrie III, Journée lyonnaises de la Société Mathématique de France, 1983

  24. Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys.123, 177–254 (1989)

    Google Scholar 

  25. Segal, G.B.: The definition of conformal field theory. Differential Geometric Methods in Theoretical Physics, eds. Bleuler, K., Werner, M. Academic Publishers, 1988, pp. 165–171

  26. Tsuchiya, A., Ueno, K., Yamada, Y.: In: Advanced Studies on Pure Math. vol. 19, 1989

  27. Verlinde, E.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys.B300, 360–376 (1988)

    Google Scholar 

  28. Witten, E.: Non-abelian bosonization in two-dimensions. Commun. Math. Phys.92, 455–472 (1984)

    Google Scholar 

  29. Witten, E.: 2+1 dimensional gravity as an exactly soluble system. Nucl. Phys.B311, 46–78 (1988/89)

    Google Scholar 

  30. Witten, E.: Quantum field theory and the Jones polynomial. IAS preprint HEP-88/33

  31. Zhu, Y.: Vertex Operator Algebra, Elliptic Functions and Modular Forms. Yale Thesis, Dept. of Math., 1990

  32. Zuckerman, G. Course lecture notes on the representation theory of infinite dimensional Lie algebras. Dept. of Math., Yale Univ., Fall 1991

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lian, B.H. On the classification of simple vertex operator algebras. Commun.Math. Phys. 163, 307–357 (1994). https://doi.org/10.1007/BF02102011

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02102011

Keywords

Navigation