Skip to main content
Log in

The periaqueductal gray in the cat projects to lamina VIII and the medial part of lamina VII throughout the length of the spinal cord

  • Original Paper
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The periaqueductal gray (PAG) plays an important role in analgesia as well as in motor activities, such as vocalization, cardiovascular changes, and movements of the neck, back, and hind limbs. Although the anatomical pathways for vocalization and cardiovascular control are rather well understood, this is not the case for the pathways controlling the neck, back, and hind limb movements. This led us to study the direct projections from the PAG to the spinal cord in the cat. In a retrograde tracing study horseradish peroxidase (HRP) was injected into different spinal levels, which resulted in large HRP-labeled neurons in the lateral and ventrolateral PAG and the adjacent mesencephalic tegmentum. Even after an injection in the S2 spinal segment a few of these large neurons were found in the PAG. Wheat germ agglutinin-conjugated HRP injections in the ventrolateral and lateral PAG resulted in anterogradely labeled fibers descending through the ventromedial, ventral, and lateral funiculi. These fibers terminated in lamina VIII and the medial part of lamina VII of the caudal cervical, thoracic, lumbar, and sacral spinal cord. Interneurons in these laminae have been demonstrated to project to axial and proximal muscle motoneurons. The strongest PAG-spinal projections were to the upper cervical cord, where the fibers terminated in the lateral parts of the intermediate zone (laminae V, VII, and the dorsal part of lamina VIII). These laminae contain the premotor interneurons of the neck muscles. This distribution pattern suggests that the PAG-spinal pathway is involved in the control of neck and back movements. Comparing the location of the PAG-spinal neurons with the results of stimulation experiments leads to the supposition that the PAG-spinal neurons play a role in the control of the axial musculature during threat display.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abols IA, Basbaum AL (1981) Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain. J Comp Neurol 201:285–297

    Article  CAS  Google Scholar 

  • Abrahams VC, Hilton SM, Zbrozyna A (1960) Active muscle-vasodilatation produced by stimulation of the brainstem: its significance in the defence reaction. J Physiol (Lond) 154:491–513

    Article  CAS  Google Scholar 

  • Abzug C, Maeda M, Peterson BW, Wilson VJ (1974) Cervical branching of lumbar vestibulospinal axons. J Physiol (Lond) 243:499–522

    Article  CAS  Google Scholar 

  • Bandler R, Carrive P (1988) Integrated defence reaction elicited by excitatory amino acid microinjection in the midbrain periaqueductal grey region of the unrestrained cat. Brain Res 439:95–106

    Article  CAS  Google Scholar 

  • Bandler R, Carrive P, Zhang AP (1991) Integration of somatic and autonomic reactions within the midbrain periaqueductal grey: viscerotopic, somatotopic and functional organization. Prog Brain Res 87:269–305

    Article  CAS  Google Scholar 

  • Basbaum AI, Fields HL (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7:309–338

    Article  CAS  Google Scholar 

  • Berk ML, Finkelstein JA (1982) Efferent connections of the lateral hypothalamic area of the rat: an autoradiographic investigation. Brain Res Bull 8:511–526

    Article  CAS  Google Scholar 

  • Berman AL (1968) The brainstem of the cat. A cytoarchitectonic atlas with stereotaxic coordinates. University of Winconsin Press, Madison

    Google Scholar 

  • Büttner-Ennever JA, Büttner U (1988) The reticular formation. In: Büttner-Ennever JA (ed) Neuroanatomy of the oculomotor systems. Elsevier, Amsterdam, pp 119–176

    Google Scholar 

  • Carrive P, Bandler R (1991) Control of extracranial and hindlimb blood flow by the midbrain periaqueductal grey of the cat. Exp Brain Res 84:599–606

    Article  CAS  Google Scholar 

  • Carrive P, Bandler R, Dampney RAL (1989) Viscerotopic control of regional vascular beds by discrete groups of neurons within the midbrain periaqueductal gray. Brain Res 493:385–390

    Article  CAS  Google Scholar 

  • Castiglioni AJ, Gallaway MC, Coulter JD (1978) Spinal projections from the midbrain in monkey. J Comp Neurol 178:329–346

    Article  CAS  Google Scholar 

  • Fardin V, Oliveras JL, Besson JM (1984) A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. I. The production of behavioral side effects together with analgesia. Brain Res 306:105–123

    Article  CAS  Google Scholar 

  • Fukushima K (1987) The interstitial nucleus of Cajal and its role in the control of movements of head and eye. Prog Neurobiol 29:107–192

    Article  CAS  Google Scholar 

  • Fukushima K, Pitts NG, Peterson BW (1978) Direct excitation of neck motoneurons by interstitiospinal fibers. Exp Brain Res 33:565–581

    Article  CAS  Google Scholar 

  • Fukushima K, Takahashi K, Kudo J, Kato M (1985) Interstitial vestibular interaction in the control of head posture. Exp Brain Res 57:264–270

    Article  CAS  Google Scholar 

  • Hassler R (1972) Supranuclear structures regulating binocular eye and head movements. Bibl Ophthalmol 82:207–219

    CAS  PubMed  Google Scholar 

  • Holstege G (1987) Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat. J Comp Neurol 260:98–126

    Article  CAS  Google Scholar 

  • Holstege G (1988a) Direct and indirect pathways to lamina I in the medulla oblongata and spinal cord in the cat. Prog Brain Res 77:141–157

    Article  Google Scholar 

  • Holstege G (1988b) Brainstem-spinal cord projections in the cat, related to control of head and axial movements. Oculomot Res 2:431–470

    CAS  Google Scholar 

  • Holstege G (1989) Anatomical study of the final common pathway for vocalization in the cat. J Comp Neurol 284:242–252

    Article  CAS  Google Scholar 

  • Holstege G (1990) Subcortical limbic system projections to caudal brainstem and spinal cord. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 261–286

    Chapter  Google Scholar 

  • Holstege G (1991) Descending motor pathways and the spinal motor system: limbic and non-limbic components. Prog Brain Res 87:307–412

    Article  CAS  Google Scholar 

  • Holstege G (1992) The emotional motor system. Eur J Morphol 30:67–79

    CAS  PubMed  Google Scholar 

  • Holstege G, Cowie RJ (1989) Projections from the rostral mesencephalic reticular formation to the spinal cord. An HRP and autoradiographical tracing study in the cat. Exp Brain Res 75:265–279

    Article  CAS  Google Scholar 

  • Holstege G, Kuypers HGJM (1982) The anatomy of brain stem pathways to the spinal cord in cat. A labeled amino acid tracing study. Prog Brain Res 57:145–175

    Article  CAS  Google Scholar 

  • Holstege G, Meiners L, Tan K (1985) Projections of the bed nucleus of the stria terminalis to the mesencephalon. Exp Brain Res 58:379–391

    Article  CAS  Google Scholar 

  • Hopkins DA, Holstege G (1978) Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Exp Brain Res 32:529–547

    Article  CAS  Google Scholar 

  • Huerta MF, Karting JK (1982) Tectal control of spinal cord activity: neuroanatomical demonstration of pathways connecting the superior colliculus with the cervical spinal cord grey. Prog Brain Res 57:293–328

    Article  CAS  Google Scholar 

  • Hyde JE, Toczek S (1962) Functional relation of interstitial nucleus to rotatory movements evoked from zona incerta stimulation. J Neurophysiol 25:455–466

    Article  CAS  Google Scholar 

  • Jürgens U, Chang-Lin L (1993) Interactions between glutamate, GABA, acetylcholine and histamine in the periaqueductal gray's control of vocalization in the squirrel monkey. Neurosci Lett 152:5–8

    Article  Google Scholar 

  • Jürgens U, Pratt R (1979) Role of the periaqueductal grey in vocal expression of emotion. Brain Res 167:367–378

    Article  Google Scholar 

  • Kanai T, Wang SC (1962) Localization of the central vocalization mechanism in the brainstem of the cat. Exp Neurol 6:426–434

    Article  CAS  Google Scholar 

  • Kristensson K, Olsson Y (1974) Retrograde transport of horseradish peroxidase in transsected axons. I. Time relationships between transport and induction chromatolysis. Brain Res 79:101–109

    Article  CAS  Google Scholar 

  • Larson CR (1985) The midbrain periaqueductal gray: a brainstem structure involved in vocalization. J Speech Hear Res 28:241–249

    Article  CAS  Google Scholar 

  • Levine R, Morgan MM, Cannon JT, Liebeskind JC (1991) Stimulation of the periaqueductal gray matter in the rat produces a preferential ipsilateral antinociception. Brain Res 13:140–144

    Article  Google Scholar 

  • Liebeskind JC, Guilbaud G, Besson JM, Oliveras JL (1973) Analgesia from electrical stimulation of the periaqueductal gray matter in the cat: behavioral observations and inhibitory effects on spinal cord interneurons. Brain Res 50:441–446

    Article  CAS  Google Scholar 

  • Lindgren P (1955) The mesencephalon and the vasomotor system. Acta Physiol Scand [Suppl 35] 121:1–183

    Google Scholar 

  • Lovick TA (1985a) Ventrolateral medullary lesions block the antinociceptive and cardiovascular responses elicited by stimulating the dorsal periaqueductal grey matter in rats. Pain 21:241–252

    Article  CAS  Google Scholar 

  • Lovick TA (1985b) Projections from the diencephalon and mesencephalon to nucleus paragigantocellularis lateralis in the cat. Neuroscience 14:853–861

    Article  CAS  Google Scholar 

  • Lovick TA (1991) Interactions between descending pathways from the dorsal and ventrolateral periaqueductal gray matter in the rat. In: Depaulis A, Bandler R (eds) The midbrain periaqueductal gray matter, functional, anatomical, and neurochemical organization. Plenum, New York, pp 101–120

    Chapter  Google Scholar 

  • Mantyh PW (1983) Connections of midbrain periaqueductal gray in the monkey. II: Descending efferent projections. J Neurophysiol 49:582–594

    Article  CAS  Google Scholar 

  • Martin GF, Humbertson AO, Laxson LC, Panneton WM, Tschismadia I (1979) Spinal projections from the mesencephalic and pontine reticular formation in the north american opossum: a study using axonal transport techniques. J Comp Neurol 187:373–400

    Article  CAS  Google Scholar 

  • Mason P, Strassman A, Maciewicz R (1985) Pontomedullary raphe neurons: monosynaptic excitation from midbrain sites that suppress the jaw opening reflex. Brain Res 329:384–389

    Article  CAS  Google Scholar 

  • Matsuyama K, Kobayashi Y, Mori S (1993) Projection patterns of single pontine reticulospinal axons in the cervical and lumbar enlargements in the cat. Soc Neurosci Abstr 19:1439

    Google Scholar 

  • Mayer DJ, Wolfle TL, Akil H, Carder B, Liebeskind JC (1971) Analgesia from electrical stimulation in the brainstem of the rat. Science 174:1351–1354

    Article  CAS  Google Scholar 

  • Molenaar I (1978) The distribution of propriospinal neurons projecting to different motoneuronal cell groups in the cat's brachial cord. Brain Res 158:203–206

    Article  CAS  Google Scholar 

  • Molenaar I, Rustioni A, Kuypers HGJM (1974) The location of cells of origin of the fibers in the ventral and the lateral funiculus of the cat's lumbo-sacral cord. Brain Res 78:239–254

    Article  CAS  Google Scholar 

  • Nyberg-Hansen R, Mascitti TA (1964) Sites and mode of termination of fibers in vestibulospinal tract in the cat. An experimental study with silver impregnation methods. J Comp Neurol 122:369–388

    Article  CAS  Google Scholar 

  • Nyberg-Hansen R (1965) Sites and mode of termination of reticulo-spinal fibers in the cat. An experimental study with silver impregnation methods. J Comp Neurol 124:71–100

    Article  CAS  Google Scholar 

  • Nyberg-Hansen R (1966) Sites of termination of interstitiospinal fibers in the cat. An experimental study with silver impregnation methods. Arch Ital Biol 104:98–111

    CAS  PubMed  Google Scholar 

  • Oliveras JL, Besson JM (1988) Stimulation produced analgesia in animals: behavioural investigations. Prog Brain Res 77:41–157

    Google Scholar 

  • Petras JM (1967) Cortical, tectal and tegmental fiber connections in the spinal cord of the cat. Brain Res 6:275–324

    Article  CAS  Google Scholar 

  • Price JL, Amaral DG (1981) An autoradiographic study on the projections of the central nucleus of the monkey amygdala. J Neurosci 11:1242–1259

    Article  Google Scholar 

  • Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–380

    Article  CAS  Google Scholar 

  • Rizvi TA, Ennis M, Behbehani MM, Shipley MT (1991) Connections between the central nucleus of the amygdala and the midbrain periaqueductal gray: topography and reciprocity. J Comp Neurol 303:121–131

    Article  CAS  Google Scholar 

  • Rustioni A, Kuypers HGJM; Holstege G (1971) Propriospinal projections from the ventral and lateral funiculi to the motoneurons in the lumbosacral cord of the cat. Brain Res 34:255–275

    Article  CAS  Google Scholar 

  • Shinoda Y, Ghez C, Arnold AP (1977) Spinal branching of rubrospinal axons in the cat. Exp Brain Res 30:203–218

    CAS  PubMed  Google Scholar 

  • Sterling P, Kuypers HGJM (1968) Anatomical organization of the brachial spinal cord of the cat. III. The propriospinal connections. Brain Res 7:419–443

    Article  CAS  Google Scholar 

  • Wilson VJ, Peterson BW (1981) Vestibulospinal and reticulospinal systems. In: Brooks VB (ed) Motor control. (Handbook of physiology, Sect 1, The nervous system, vol II) Oxford University Press, Oxford, pp 667–702

    Google Scholar 

  • Zhang SP, Bandler R, Carrive P (1990) Flight and immobility evoked by excitatory amino acid microinjection within distinct parts of the subtentorial midbrain periaqueductal gray of the cat. Brain Res 520:73–82

    Article  CAS  Google Scholar 

  • Zhang SP, Davis PJ, Carrive P, Bandler R (1992) Vocalization and marked pressor effect evoked from the region of the nucleus retroambiguus in the caudal ventrolateral medulla of the cat. Neurosci Lett 140:103–107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouton, L.J., Holstege, G. The periaqueductal gray in the cat projects to lamina VIII and the medial part of lamina VII throughout the length of the spinal cord. Exp Brain Res 101, 253–264 (1994). https://doi.org/10.1007/BF00228745

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00228745

Key words

Navigation