Skip to main content
Log in

Possible roles of prostaglandins in the anteroventral third ventricular region in the hyperosmolality-evoked vasopressin secretion of conscious rats

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study explored the roles of prostaglandins in the anteroventral third ventricular region, a cerebral osmoreceptor site, in the osmoregulation mechanism of vasopressin release. We injected (1 μl) prostaglandin E2 (12.8 nmol) or meclofenamate (78.3 nmol), an inhibitor of prostaglandin biosynthesis, into the brain region or the lateral cerebral ventricle of conscious rats, examining their effects on plasma vasopressin and its controlling factors in the presence or absence of an osmotic stimulus. The injection of prostaglandin E2 into the anteroventral third ventricular region augmented plasma vasopressin and arterial pressure after 5 min and 15 min, without influencing plasma osmolality, sodium, potassium, or chloride. In contrast, intraventricular injection of prostaglandin E2 did not cause any significant effect on those variables. The i.v. infusion (0.1 ml·kg−1·min−1) of hypertonic saline (2.5 mol/l) enhanced plasma vasopressin after 15 min and 30 min; this was accompanied by increased plasma osmolality, sodium, and chloride, and by unaltered or elevated arterial pressure. Meclofenamate given into the anteroventral third ventricular region 30 min before starting the hypertonic saline infusion abolished the osmotic vasopressin response without significantly changing the responses of the other variables. Histological analysis showed that the injection sites of meclofenamate in these rats were close to those of prostaglandin E2 in the anteroventral third ventricular region and included the organum vasculosum of the lamina terminalis and the surrounding area, the medial preoptic area, and periventricular and median preoptic nuclei. When injection cannulae for meclofenamate deviated from those areas incidentally or when the drug was expressly administered into the cerebral ventricle, the osmotic vasopressin response was not inhibited. Plasma vasopressin and the other variables observed during the i.v. infusion of isotonic saline (0.15 mol/l) were not affected significantly by meclofenamate administration into the anteroventral third ventricular region or the cerebral ventricle. On the basis of these results, we concluded that prostaglandins synthesized in and/or near the anteroventral third ventricular region might contribute to the facilitation of vasopressin release in the hyperosmotic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bealer SL, Van Huysse JW (1989) Axon destruction and adrenergic systems mediate pressor responses after AV3V lesions. Am J Physiol 257:R80-R86

    PubMed  CAS  Google Scholar 

  • Brooks DP, Share L, Crofton JT (1986) Role of brain prostaglandins in the control of vasopressin secretion in the conscious rat. Endocrinology 118:1716–1722

    PubMed  CAS  Google Scholar 

  • Bucci MN, Black KL, Hoff JT (1990) Arachidonic acid metabolite production following focal cerebral ischemia: time course and effect of meclofenamate. Surg Neurol 33:12–14

    Article  PubMed  CAS  Google Scholar 

  • Buggy J, Johnson AK (1977) Preoptic-hypothalamic periventricular lesions: thirst deficits and hypernatremia. Am J Physiol 233:R44-R52

    PubMed  CAS  Google Scholar 

  • Buggy J, Hoffman WE, Phillips MI, Fisher AE, Johnson AK (1979) Osmosensitivity of rat third ventricle and interactions with angiotensin. Am J Physiol 236:R75-R82

    PubMed  CAS  Google Scholar 

  • Ferreira SH, Vane JR (1974) New aspects of the mode of action of nonsteroid anti-inflammatory drugs. Annu Rev Pharmacol 14:57–71

    Article  CAS  Google Scholar 

  • Fujimoto S (1980) The effects of prostaglandin E2 microinjected into the rat hypothalamus on urinary excretion of water and sodium. Br J Pharmacol 70:415–417

    PubMed  CAS  Google Scholar 

  • Goehlert UG, Ng Ying Kin NMK, Wolfe LS (1981) Biosynthesis of prostacyclin in rat cerebral microvessels and the choroid plexus. J Neurochem 36:1192–1201

    PubMed  CAS  Google Scholar 

  • Hartung HP, Schafer B, Heininger K, Toyka KV (1989) Recombinant interleukin-1 beta stimulates eicosanoid production in rat primary culture astrocytes. Brain Res 489:113–119

    Article  PubMed  CAS  Google Scholar 

  • Hertting G, Seregi A (1989) Formation and function of eicosanoids in the central nervous system. Ann NY Acad Sci 559: 84–99

    PubMed  CAS  Google Scholar 

  • Hoffman WE, Schmid PG (1979) Cardiovascular and antidiuretic effects of central prostaglandin E2. J Physiol (Lond) 288:159–169

    CAS  Google Scholar 

  • Hoffman PK, Share L, Crofton JT, Shade RE (1982) The effect of intracerebroventricular indomethacin on osmotically stimulated vasopressin release. Neuroendocrinology 34:132–139

    PubMed  CAS  Google Scholar 

  • Honda K, Negoro H, Dyball REJ, Higuchi T, Takano S (1990) The osmoreceptor complex in the rat: evidence for interactions between the supraoptic and other diencephalic nuclei. J Physiol (Lond) 431:225–241

    CAS  Google Scholar 

  • Inoue M, Crofton JT, Share L (1990) Interactions between the brain renin-angiotensin system and brain prostanoids in the control of vasopressin secretion. Exp Brain Res 83:131–136

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa S, Saito T, Yoshida S (1981) The effect of prostaglandins on the release of arginine vasopressin from the guinea pig hypothalamo-neurohypophyseal complex in organ culture. Endocrinology 108:193–198

    Article  PubMed  CAS  Google Scholar 

  • Johnson AK (1985) The periventricular anteroventral third ventricle (AV3V): its relationship with the subformical organ and neural systems involved in maintaining body fluid homeostasis. Brain Res Bull 15:595–601

    Article  PubMed  CAS  Google Scholar 

  • Johnson AK, Zardetto-Smith AM, Edwards GL (1992) Integrative mechanisms and the maintenance of cardiovascular and body fluid homeostasis: the central processing of sensory input derived from the circumventricular organs of the lamina terminalis. Prog Brain Res 91:381–393

    PubMed  CAS  Google Scholar 

  • Kataoka K, Ramwell PW, Jessup S (1967) Prostaglandins: localization in subcellular particles of rat cerebral cortex. Science 157:1187–1189

    PubMed  CAS  Google Scholar 

  • Komaki G, Arimura A, Koves K (1992) Effect of intravenous injection of IL-1β on PGE2 levels on several brain areas as determined by microdialysis. Am J Physiol 262:E246-E251

    PubMed  CAS  Google Scholar 

  • Malet C, Scherrer H, Saavedra JM, Dray F (1982) Specific binding of [3H][rostaglandin E2 to rat brain membranes and synaptosomes. Brain Res 236:227–233

    Article  PubMed  CAS  Google Scholar 

  • Matsumura K, Watanabe Y, Onoe H, Hayaishi O (1990) High density of prostaglandin E2 binding sites in the anterior wall of the third ventricle: a possible site of hyperthermic action. Brain Res 533:147–151

    Article  PubMed  CAS  Google Scholar 

  • McAllen RM, Pennington GL, McKinley MJ (1990) Osmoresponsive units in sheep median preoptic nucleus. Am J Physiol 259:R593-R600

    PubMed  CAS  Google Scholar 

  • McKinley MJ (1992) Efferent neural pathways of the lamina terminalis subserving osmoregulation. Prog Brain Res 91:395–402

    PubMed  CAS  Google Scholar 

  • McKinley MJ, McAllen RM, Mendelsohn FAO, Allen AM, Chai SY, Oldfield BJ (1990) Circumventricular organs: neuroendocrine interfaces between the brain and the hemal milieu. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology, vol 11. Raven, New York, pp 91–127

    Google Scholar 

  • Morimoto K, Morimoto A, Nakamori T, Tan N, Minagawa T, Murakami N (1992) Cardiovascular responses induced in free-moving rats by immune cytokines. J Physiol (Lond) 448:307–320

    CAS  Google Scholar 

  • Nissen R, Bourque CW, Renaud LP (1993) Membrane properties of organum vasculosum lamina terminalis neurons recorded in vitro. Am J Physiol 264:R811-R815

    PubMed  CAS  Google Scholar 

  • Oldfield BJ, Miselis RR, McKinley MJ (1991) Median preoptic nucleus projections to vasopressin-containing neurons of the supraoptic nucleus in sheep. A light and electron microscopic study. Brain Res 542:193–200

    Article  PubMed  CAS  Google Scholar 

  • Otorii T, Ohkubo K, Suzuki K (1985) Central noradrenergic neurons and the hypertensive effects of intracerebroventricularly administered prostaglandin E2 in anaesthetized rabbits. Prostaglandins 29:25–33

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic, Sydney

    Google Scholar 

  • Phillips MI, Hoffman WE (1977) Sensitive sites in the brain for the blood pressure and drinking responses to angiotensin II. In: Buckley JP, Ferrario CM (eds) Central actions of angiotensin and related hormones. Pergamon, New York, pp 325–356

    Google Scholar 

  • Renaud LP, Hu B (1995) Forebrain GABAergic and glutamatergic inputs to magnocellular neurosecretory neurons. In: Saito T, Kurokawa K, Yoshida S (eds) Neurohypophysis: recent progress of vasopressin and oxytocin research. Elsevier, Amsterdam, pp 237–242

    Google Scholar 

  • Roberts PJ, Hillier K (1976) Facilitation of noradrenaline release from rat brain synaptosomes by prostaglandin E2. Brain Res 112:425–428

    Article  PubMed  CAS  Google Scholar 

  • Saper CB, Breder CD (1992) Endogenous pyrogens in the CNS: role in the febrile response. Prog Brain Res 93:419–429

    PubMed  CAS  Google Scholar 

  • Telegdy G (1981) Effects of prostaglandins on catecholamine metabolism of the central nervous system in rats. Acta Physiol Acad Sci Hung 57:221–224

    PubMed  CAS  Google Scholar 

  • Thrasher TN, Keil LC (1987) Regulation of drinking and vasopressin secretion: role of organum vasculosum laminae terminalis. Am J Physiol 253:R108-R120

    PubMed  CAS  Google Scholar 

  • Tsubokura S, Watanabe Y, Ehara H, Imamura K, Sugimoto O, Kagamiyama H, Yamamoto S, Hayaishi O (1991) Localization of prostaglandin endoperoxide synthase in neurons and glia in monkey brain. Brain Res 543:15–24

    Article  PubMed  CAS  Google Scholar 

  • Walker BR, Erickson AL, Arnold PE, Burke TJ, Berl T (1986) Reduced osmotic and nonosmotic release of vasopressin after meclofenamate in the conscious dog. Am J Physiol 250: R1028-R1033

    PubMed  CAS  Google Scholar 

  • Watanobe H, Takebe K (1994) Effects of intravenous administration of interleukin-1-beta on the release of prostaglandin E2, corticotropin-releasing factor, and arginine vasopressin in several hypothalamic areas of freely moving rats: estimation by push-pull perfusion. Neuroendocrinology 60:8–15

    PubMed  CAS  Google Scholar 

  • Watanabe T, Morimoto A, Sakata Y, Murakami N (1990) ACTH response induced by interleukin-1 is mediated by CRF secretion stimulated by hypothalamic PGE. Experientia 46:481–484

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Hama H (1991a) Separation of periventricular dopaminergic and alpha-adrenergic systems from the vasopressin-secreting mechanisms activated by prostaglandin D2. Brain Res 559:261–266

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Hama H (1991b) Participation of periventricular dopamine receptors in vasopressin secretion elicited by hypertonicity of systemic blood in rats. Acta Endocrinol (Copenh) 124:455–462

    CAS  Google Scholar 

  • Yamaguchi K, Hama H (1993) Evaluation for roles of brain prostaglandins in the catecholamine-induced vasopressin secretion in conscious rats. Brain Res 607:149–153

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Sakaguchi T, Kamoi K (1982) Central role of angiotensin in the hyperosmolality- and hypovolaemia-induced vasopressin release in conscious rats. Acta Endocrinol (Copenh) 101:524–530

    CAS  Google Scholar 

  • Yamaguchi K, Koike M, Hama H (1985) Plasma vasopressin response to peripheral administration of angiotensin in conscious rats. Am J Physiol 248:R249-R256

    PubMed  CAS  Google Scholar 

  • Yamaguchi K, Hama H, Watanabe K (1996) Possible contribution of dopaminergic receptors in the anteroventral third ventricular region of hyperosmolality-induced vasopressin secretion in conscious rats. Eur J Endocrinol 134:243–250

    PubMed  CAS  Google Scholar 

  • Yamamoto M, Share L, Shade RE (1976) Vasopressin release during ventriculo-cisternal perfusion with prostaglandin E2 in the dog. J Endocrinol 71:325–331

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Share L, Shade RE (1978) Effect of ventriculo-cisternal perfusion with angiotensin II and indomethacin on the plasma vasopressin concentration. Neuroendocrinology 25: 166–173

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, K., Hama, H. & Watanabe, K. Possible roles of prostaglandins in the anteroventral third ventricular region in the hyperosmolality-evoked vasopressin secretion of conscious rats. Exp Brain Res 113, 265–272 (1997). https://doi.org/10.1007/BF02450324

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02450324

Key words

Navigation