Skip to main content
Log in

Short latency inputs to phrenic motoneurones from the sensorimotor cortex in the cat

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Short latency responses were recorded from C5 phrenic roots and intracellularly from phrenic motoneurones following stimulation of the pericruciate cortex or medullary pyramids in cats anaesthetized with Nembutal or chloralose-urethane. Focal stimulation of the cortical surface (single pulses, 0.5–2 ms, 0.3–8 mA) during inspiration evoked EPSPs (latency 4.7 ± 1.7 ms, rise time 1.9 ± 1.1 ms, amplitude 0.22 to 3.94 mV) in 42% of motoneurones studied (n = 107). The EPSPs were absent, or on average 60% smaller, following stimulation during expiration. In all but two motoneurones, during both inspiration and expiration, hyperpolarizing potentials were observed either following the initial depolarization or alone. They could be reversed by hyperpolarizing current or chloride injection. Stimulation of the pyramidal tract at mid medullary level (1 to 3 pulses, 0.2 ms) evoked short latency excitation in phrenic motoneurones only with currents of more than 200 μA. Smaller stimuli applied to the medial reticular formation above the pyramidal tract evoked excitation (onset latency 1.5–3.2 ms) in which the earliest part was probably monosynaptic. These results show that the corticospinal responses in phrenic motoneurones are both excitatory and inhibitory. They are not transmitted through the pyramidal tract and are at least disynaptic. Excitation evoked from the medullary pyramidal tract can be explained by current spread beyond the pyramidal tract fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aminoff MJ, Sears TA (1971) Spinal integration of segmental, cortical and breathing inputs to thoracic respiratory motoneurones. J Physiol (Lond) 215: 557–575

    Google Scholar 

  • Asanuma H, Arnold AP (1975) Noxious effects of excessive currents used for intracortical microstimulation. Brain Res 96: 103–107

    Google Scholar 

  • Bassal M, Bianchi AL (1981a) Effets de la stimulation des structures nerveuses centrales sur les activités respiratoires efférentes chez le chat. I. Réponses à la stimulation corticale. J Physiol (Paris) 77: 741–757

    Google Scholar 

  • Bassal M, Bianchi AL (1981b) Effets de la stimulation des structures nerveuses centrales sur les activités respiratoires efférentes chez le chat. II. Réponses à la stimulation souscorticale. J Physiol (Paris) 77: 759–777

    Google Scholar 

  • Bassal M, Bianchi AL, Dussardier M (1981) Effets de la stimulation des structures nerveuses centrales sur l'activité des neurones respiratoires chez le chat. J Physiol (Paris) 77: 779–795

    Google Scholar 

  • Bassal M, Bianchi AL (1982) Inspiratory onset or termination induced by electrical stimulation of the brain. Resp Physiol 50: 23–40

    Google Scholar 

  • Berger AJ (1979) Phrenic motoneurones in the cat: subpopulations and nature of respiratory drive potentials. J Neurophysiol 42: 76–90

    Google Scholar 

  • Berger AJ, Averill DB, Cameron WE (1984) Morphology of inspiratory neurons located in the ventrolateral nucleus of the tractus solitarius of the cat. J Comp Neurol 224: 60–70

    Google Scholar 

  • Berman AL (1968) The brain stem of the cat. A cytoarchitectonic atlas with stereotaxic coordinates. The University of Wisconsin Press, Madison Milwaukee London, Plates 6–8

    Google Scholar 

  • Berrevoets CE, Kuypers HGJM (1975) Pericruciate cortical neurons projecting to brain stem reticular formation, dorsal column nuclei and spinal cord in the cat. Neurosci Lett 1: 257–262

    Google Scholar 

  • Cameron WE, Averill DB, Berger AJ (1983) Morphology of cat phrenic motoneurons as revealed by intracellular injection of horseradish peroxidase. J Comp Neurol 219: 70–80

    Google Scholar 

  • Cheema SS, Rustioni A, Whitsel BL (1984) Light and electron microscopic evidence for direct corticospinal projection to superficial laminae of the dorsal horn in cats and monkeys. J Comp Neurol 225: 276–290

    Google Scholar 

  • Colle J, Massion J (1958) Effet de la stimulation du cortex moteur sur l'activité électrique des nerfs phréniques et médians. Arch Int Physiol Biochem 66: 496–514

    Google Scholar 

  • Endo K, Araki T, Kawai Y (1975) Contra- and ipsilateral cortical and rubral effects on fast and slow spinal motoneurons of the cat. Brain Res 88: 91–98

    Google Scholar 

  • Davenport PW, Thompson FJ, Reep RL, Freed AN (1985) Projection of phrenic nerve afferents to the cat sensorimotor cortex. Brain Res 328: 150–153

    Google Scholar 

  • Davies RO, Loeschcke HH (1977) Responses of phrenic nerve to electrical stimulation of medullary chemosensitive areas and carotid sinus nerve. Pflügers Arch 368: R39

    Google Scholar 

  • Hassler R, Muhs-Clement K (1964) Architektonischer Aufbau des sensomotorischen und parietalen Cortex der Katze. J Hirnforsch 6: 377–420

    Google Scholar 

  • Hern JEC, Phillips CG, Porter R (1962) Electrical thresholds of unimpaled corticospinal cells in the cat. Q J Exp Physiol 47: 134–140

    Google Scholar 

  • Holstege G, Kuypers HGJM, Boer RC (1979) Anatomical evidence for direct brain stem projections to the somatic motoneuronal cell groups and autonomic preganglionic cell groups in cat spinal cord. Brain Res 171: 329–333

    Google Scholar 

  • Holstege G, Graveland G, Boer R, Kuypers HGJM (1980) Which brainstem neurons project directly to spinal neurons? An autoradiographical study of rubro-, coeruleo-, raphe- and vestibulo-spinal connections in the cat. Neurosci Lett (Suppl 5) S 338

  • Holstege G, Kuypers HGJM (1982) The anatomy of brain stem pathways to the spinal cort in cat. A labeled amino acid tracing study. In: Kuypers HGJM, Martin GF (eds) Descending pathways to the Spinal cord, Prog Brain Res, Vol 57. Elsevier Biomedical Amsterdam, pp 145–175

    Google Scholar 

  • Kongo T, Jankowska E (1967) Effects from the sensorimotor cortex on the spinal cord in cats with transected pyramids. Exp Brain Res 3: 117–134

    Google Scholar 

  • Kuypers HGJM (1958) An anatomical analysis of cortico-bulbar connections to the pons and lower brain stem in the cat. J Anat (Lond) 92: 198–218

    Google Scholar 

  • Kuypers HGJM, Huisman AM (1982) The new anatomy of descending brain pathways. In: Sjolund B, Björklund A (eds) Brain stem control of spinal mechanisms. Elsevier Biomedical, Amsterdam, pp 29–54

    Google Scholar 

  • Lipski J, Bektas A, Porter R (1985) Is there a direct cortico-spinal input to cat phrenic motoneurons? Neurosci Lett (Suppl 19) S 80

  • Lipski J, Kubin L, Jodkowski J (1983) Synaptic actions of Rß neurons on phrenic motoneurons studied with spike-triggered averaging. Brain Res 288: 105–118

    Google Scholar 

  • Lipski J, Fyffe REW, Jodkowski J (1985) Recurrent inhibition of cat phrenic motoneurons. J Neurosci 5: 1545–1555

    Google Scholar 

  • Magni F, Willis WD (1964) Cortical control of brain stem reticular neurons. Arch Ital Biol 102: 418–433

    Google Scholar 

  • Orem J, Netick A (1985) Behavioral control of the respiratory system in the cat. Fed Proc 44: 429

    Google Scholar 

  • Patton HD, Amassian VE (1954) Single- and multiple-unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol 17: 345–363

    Google Scholar 

  • Peterson BW (1979) Reticulospinal projections to spinal motor nuclei. Ann Rev Physiol 41: 127–140

    Google Scholar 

  • Peterson BW, Anderson ME, Filion M (1974) Responses of pontomedullary reticular neurons to cortical, tectal and cutaneous stimuli. Exp Brain Res 21: 19–44

    CAS  PubMed  Google Scholar 

  • Pitts RF, Magoun HW, Ranson SW (1939) Localization of the medullary respiratory centers in the cat. Am J Physiol 126: 673–688

    Google Scholar 

  • Planche D (1972) Effets de la Stimulation du cortex cérébral sur l'activité du nerf phrénique. J Physiol (Paris) 64: 31–56

    Google Scholar 

  • Planche D, Bianchi AL (1972) Modification de l'activité des neurones respiratoires bulbaires provoqué par stimulation corticale. J Physiol (Paris) 64: 69–76

    Google Scholar 

  • Rijlant P (1940) L'inhibition de la respiration par l'excitation du cortex cérébral. CR Soc Biol 134: 247–252

    Google Scholar 

  • Rikard-Bell GC, Bystrzycka EK, Nail BS (1983) Cortical and brainstem projections to the phrenic nucleus of the cat. In: Davey DF, Dampney RAL (eds) Proceedings of the international union of Physiological sciences, Sydney, Vol XV, p39

  • Rikard-Bell GC, Bystrzycka EK, Nail BS (1985) Cells of origin of corticospinal projections to phrenic and thoracic respiratory motoneurones in the cat as shown by retrograde transport of HRP. Brain Res Bull 14: 39–47

    Google Scholar 

  • Sears TA (1966) Pathways of supra-spinal origin regulating the activity of respiratory motoneurones. In: Grant R (ed) Muscular afferents and motor control. Almgrist and Wiksell, Stockholm, pp 187–196

    Google Scholar 

  • Shinoda Y, Arnold AP, Asanuma H (1976) Spinal branching of corticospinal axons in the cat. Exp Brain Res 26: 215–234

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipski, J., Bektas, A. & Porter, R. Short latency inputs to phrenic motoneurones from the sensorimotor cortex in the cat. Exp Brain Res 61, 280–290 (1986). https://doi.org/10.1007/BF00239518

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00239518

Key words

Navigation