Skip to main content
Log in

Effects of deprivation of vision and vibrissae on goal-directed locomotion in cats

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The locomotor behaviour of adult cats blinded soon after birth was compared to that of control cats by measuring running time in a maze. The effects of vibrissae deprivation in trained blind and control cats and of visual deprivation in control cats was studied. The performance of the control cats decreased in darkness to the level reached by the blind cats. Deprivation of vibrissae affected the performance of the control cats only in darkness and had no effect on the blind cats. The role played by various sensory systems in locomotion during development and in adulthood is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baxter BL (1966) Effect of visual deprivation during postnatal maturation on the electroencephalogram of the cat. Exp Neurol 9: 224–237

    Google Scholar 

  • Böök A, Gärling T (1981) Maintenance of orientation during locomotion in unfamiliar environments. J Exp Psychol Hum Percept Perform 7: 995–1006

    Google Scholar 

  • Brabyn JA (1982) New developments in mobility and orientation aids for the blind. IEEE Trans BME-29: 285–289

    Google Scholar 

  • Bregman BS, Goldberger ME (1980) Infant lesion effect: result of neonatal and adult hemisection in cats. Soc Neurosci Abstr 6: 206

    Google Scholar 

  • Butter CM, Campbell BA (1960) Running speed as a function of successive reversals in hunger drive level. J Comp Physiol Psychol 53: 52–54

    Google Scholar 

  • Crabtree JW, Riesen AH (1979) Effects of the duration of dark rearing on visually guided behaviour in the kitten. Dev Psychobiol 12: 291–303

    Google Scholar 

  • Crémieux J, Veraart C, Wanet M-C (1984a) Development of the air righting reflex in cats visually deprived since birth. Exp Brain Res 54: 564–566

    Google Scholar 

  • Crémieux J, Wanet M-C, Veraart C, Fayt C (1984b) Guided locomotion in cats with and without vision. Arch Int Physiol Biochim 92: P20-P21

    Google Scholar 

  • Davis WJ, Ayers JL (1972) Locomotion: control by positive-feedback optokinetic responses. Science 177: 183–185

    Google Scholar 

  • Fish SE, Robinson JS (1971) A new coordination test of visualmotor deprived visually experienced cats. Psychon Sci 22: 28–29

    Google Scholar 

  • Gibson JJ (1958) Visually controlled locomotion and visual orientation in animals. Br J Psychol 49: 82–194

    Google Scholar 

  • Goldberger ME (1977) Locomotor recovery after unilateral hindlimb deafferentation in cats. Brain Res 123: 59–74

    Google Scholar 

  • Goodale MA (1983) Neural mechanisms of visual orientation in rodents: targets versus places. In: Hein A, Jeannerod M (eds) Spatially oriented behaviour. Springer, Berlin Heidelberg New York, pp 35–61

    Google Scholar 

  • Götz KG, Wenking H (1973) Visual control of locomotion in the walking fruitfly drosophila. J Comp Physiol 85: 235–266

    Google Scholar 

  • Hyvärinen J, Hyvärinen L, Linnankoski I (1981) Modification of parietal association cortex and functional blindness after binocular deprivation in young monkeys. Exp Brain Res 42: 1–8

    Google Scholar 

  • Igarashi M, Miyata H (1971) Visual cue alteration and bodily equilibrium in squirrel monkeys. Acta Otolaryng 72: 424–428

    Google Scholar 

  • Jansson G (1985) Perceptual theory and sensory substition. In: Ingle DJ, Jeannerod M, Lee DN (eds) Brain mechanisms and spatial vision. Martinus Nijhoff Publ, Dordrecht, pp 451–465

    Google Scholar 

  • Johansson G, von Hofsten C, Jansson G (1980) Event perception. Ann Rev Psychol 31: 27–63

    Google Scholar 

  • Korda P (1978) Locomotor stereotypy in visually deprived kittens. Acta Neurobiol Exp 38: 343–351

    Google Scholar 

  • Lee DN, Thomson JA (1982) Vision in action: the control of locomotion. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 411–433

    Google Scholar 

  • Llewellyn K (1971) Visual guidance of locomotion. J Exp Psychol 91: 245–261

    Google Scholar 

  • Loop MS, Sherman SM (1977) Visual discrimination during eyelid closure in the cat. Brain Res 128: 329–339

    Google Scholar 

  • Marchand AR, Amblard B (1984) Locomotion in adult cats with early vestibular deprivation: visual cue substitution. Exp Brain Res 54: 395–405

    Google Scholar 

  • Marchand A, Crémieux J, Amblard B (1984) Guidage visual de la patte en distance et en direction lors de la locomotion chez le chat stroboscopique délabyrinthé (Abstract). Forum Espace “Direction et distance”, Marseille, France

  • Rauschecker JP, Harris LR (1983) Auditory compensation of the effects of visual deprivation in the cat's superior colliculus. Exp Brain Res 50: 69–83

    Google Scholar 

  • Riesen AH (1958) Plasticity of behavior: psychological aspects. In: Harlow HF, Woolsey CN (eds) Biological and biochemical bases of behavior. University of Wisconsin Press, Madison, pp 425–450

    Google Scholar 

  • Riesen AH (1965) Effects of visual deprivation on perceptual functions and the neural substrate. In: de Ajuriaguerra (ed) Désafférentation expérimentale et clinique. Masson, Paris, pp 47–66

    Google Scholar 

  • Robinson JS, Fish SE (1974) A cat's form-experienced but visualmotor deprived eye lacks focal vision. Dev Psychobiol 7: 331–342

    Google Scholar 

  • Shiffman HR, Lore R, Passafiume J, Neeb R (1970) Rôle of vibrissae for depth perception in the rat (Rattus norvegicus). Anim Behav 18: 290–292

    Google Scholar 

  • Stellar JR, Gallistel CR (1975) Runway performance of rats for brain-stimulation or food reward: effects of hunger and priming. J Comp Physiol Psychol 89: 590–599

    Google Scholar 

  • Strelow ER, Brabyn JA (1981) Use of foreground and background information in visually guided locomotion. Perception 10: 191–198

    Google Scholar 

  • Timney B, Mitchell DE, Giffin F (1978) The development of vision in cats after extended periods of dark rearing. Exp Brain Res 31: 547–560

    Google Scholar 

  • Turkewitz G, Gilbert M, Birch HG (1974) Early restriction of tactile stimulation and visual functioning in the kitten. Dev Psychobiol 7: 243–248

    Google Scholar 

  • Van Hof-van Duin J (1976) Development of visuomotor behaviour in normal and dark-reared cats. Brain Res 104: 233–241

    Google Scholar 

  • Veraart C, Crémieux J, Wanet M-C, Dubrulle P (1985) Use of a visual prosthesis by visually deprived cats. Arch Int Physiol Biochim 93: P9-P10

    Google Scholar 

  • Vital-Durand F, Jeannerod M (1975) Eye movement related activity in the visual cortex of dark-reared kittens. Electroenceph Clin Neurophysiol 38: 295–301

    Google Scholar 

  • Wiesel TN, Hubel DH (1965) Extent of recovery from the effects of visual deprivation in kittens. J Neurophysiol 28: 1060–1072

    Google Scholar 

  • Xerri C, Lacour M (1980) Compensation des déficits posturaux et cinétiques après neurectomie vestibulaire unilatérale chez le chat. Rôle de l'activité sensorimotrice. Acta Otolaryng 90: 414–424

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crémieux, J., Veraart, C. & Wanet-Defalque, M.C. Effects of deprivation of vision and vibrissae on goal-directed locomotion in cats. Exp Brain Res 65, 229–234 (1986). https://doi.org/10.1007/BF00243847

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00243847

Key words

Navigation