Skip to main content
Log in

The role of compensatory eye and head movements in the rat for image stabilization and gaze orientation

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Compensatory horizontal eye movements of head restrained rats were compared with compensatory horizontal eye-head movements of partially restrained rats (head movements limited to the horizontal plane). Responses were evoked by constant velocity optokinetic and vestibular stimuli (10–60°/s) and recorded with search coils in a rotating magnetic field. Velocity and position components of eye and head responses were analysed. The velocity gains of optokinetic and vestibular responses of partially restrained and of head restrained rats were similarly high (between 0.8 and 1.0). Eye movements in partially restrained rats also contributed most (about 80%) to the velocity components of the responses. At stimulus velocities above 10°/s, the “beating field” of the evoked optokinetic and vestibular nystagmus was shifted transiently in the direction of ocular quick phases. The amplitude of this shift of the line of sight was about 3–10° in head restrained and about 20–30° in partially head restrained rats. Most of this large, transient gaze shift (about 80%) was accomplished by head movements. We interpret this gaze shift as an orienting response, and conclude that the recruitment of the ocular and the neck motor systems can be independent and task specific: head movements are primarily used to orient eye, ear and nose towards a sector of particular relevance, whereas eye movements provide the higher frequency dynamics for image stabilization and vergence movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blanks RHI, Torigoe, Y (1989) Orientation of the semicircular canals in rat. Brain Res 487:278–287

    Article  CAS  PubMed  Google Scholar 

  • Chun KS, Robinson DA (1978) A model of quick phase generation in the vestibuloocular reflex. Biol Cybern 28:209–221

    Article  CAS  PubMed  Google Scholar 

  • Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol 270:321–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collewijn H (1981) The oculomotor system of the rabbit and its plasticity. Springer-Verlag, Berlin Heidelberg New York

    Book  Google Scholar 

  • Crommelinck M, Roucoux A, Veraart C (1982) The relation of neck muscles activity to horizontal eye position in the alert cat. II. Head free. In: Roucoux A, Crommelinck M (eds) Physiological and pathological aspects of eye movements. Documenta Ophtalmologica Proc Vol 34, Junk, The Hague, pp 379–398

    Chapter  Google Scholar 

  • Dieringer N (1987) The role of compensatory eye and head movements for gaze stabilization in the unrestrained frog. Brain Res 404:33–38

    Article  CAS  PubMed  Google Scholar 

  • Dieringer N, Precht W (1982) Compensatory head and eye movements in the frog and their contribution to stabilization of gaze. Exp Brain Res 47:394–406

    CAS  PubMed  Google Scholar 

  • Dieringer N, Cochran SL, Precht W (1983) Differences in the central organisation of gaze stabilizing reflexes between frog and turtle. J Comp Physiol 153:495–508

    Article  Google Scholar 

  • Dieringer N, Reichenberger I, Graf W (1992) Differences in optokinetic and vestibular ocular reflex performance in teleosts and their relationship to different life styles. Brain Behav Evol 39:289–304

    Article  CAS  PubMed  Google Scholar 

  • Dunlap K, Mowrer OH (1931) Head movements and eye functions of birds. J Comp Psychol 11:99–113

    Article  Google Scholar 

  • Fuller JH (1985) Eye and head movements in the pigmented rat. Vision Res 25:1121–1128

    Article  CAS  PubMed  Google Scholar 

  • Fuller JH (1987) Head movements during optokinetic stimulation in the alert rabbit. Exp Brain Res 65:593–604

    Article  CAS  PubMed  Google Scholar 

  • Gioanni H (1988a) Stabilizing gaze reflexes in the pigeon (Columba livia). I. Horizontal and vertical optokinetic eye (OKN) and head (OCR) reflexes. Exp Brain Res 69:567–482

    Article  CAS  PubMed  Google Scholar 

  • Gioanni H (1988b) Stabilizing gaze reflexes in the pigeon (Columba livia). II. Vestibulo-ocular (VOR) and vestibulo-collic (closedloop VCR) reflexes. Exp Brain Res 69:583–593

    Article  CAS  PubMed  Google Scholar 

  • Gresty MA (1975) Eye, head and body movements of the guinea pig in response to optokinetic stimulation and sinusoidal oscillation in yaw. Pflugers Arch 353:201–214

    Article  CAS  PubMed  Google Scholar 

  • Hein A, Courjon JH, Flandrin JM, Arzi M (1990) Optokinetic nystagmus in the ferret: including selected comparisons with the cat. Exp Brain Res 79:623–632

    Article  CAS  PubMed  Google Scholar 

  • Hess BJM, Dieringer N (1990) Spatial organization of the maculoocular reflex of the rat: responses during off-vertical axis rotation. Eur J Neurosci 2:909–919

    Article  PubMed  Google Scholar 

  • Hess BJM, Precht W, Reber A, Cazin L (1985) Horizontal optokinetic ocular nystagmus in the pigmented rat. Neurosci 15:97–107

    Article  CAS  Google Scholar 

  • Hess BJM, Blanks RHI, Lannou J, Precht W (1989) Effects of kainic acid lesions of the nucleus reticularis tegmenti pontis on fast and slow phases of vestibulo-ocular and optokinetic reflexes in the pigmented rat. Exp Brain Res 74:63–79

    Article  CAS  PubMed  Google Scholar 

  • Huizinga E, van der Meulen P (1951) Vestibular rotatory and optokinetic reactions in the pigeon. Ann Otol Rhinol Laryngol 60:927–947

    CAS  PubMed  Google Scholar 

  • Jung R, Mittermaier R (1939) Zur objektiven Registrierung und Analyse verschiedener Nystagmusformen: Vestibulärer, optokinetischer und spontaner Nystagmus in ihren Wechselbeziehungen. Archiv Ohren Nasen Kehlkopfheilkd 146:410–439

    Article  Google Scholar 

  • Kasper HJ, Hess BJM, Dieringer N (1987) Precise and inexpensive magnetic field search coil system for measuring eye and head movements in small laboratory animals. J Neurosci Meth 19:115–124

    Article  CAS  Google Scholar 

  • Kubo T, Igarashi M, Jensen DW, Wright WK (1981a) Head and eye movements following vestibular stimulus in squirrel monkeys. Otol Rhinol Laryngol 43:26–38

    CAS  Google Scholar 

  • Kubo T, Jensen DW, Igarashi M, Homick JL (1981b) Eye-head coordination during optokinetic stimulation in squirrel monkeys. Ann Otol 90:85–88

    CAS  Google Scholar 

  • Lanman J, Bizzi E, Allum JHJ (1978) The coordination of eye and head movement during smooth pursuit. Brain Res 153:39–53

    Article  CAS  PubMed  Google Scholar 

  • Maioli C, Precht W (1984) The horizontal optokinetic nystagmus in the cat. Exp Brain Res 55:494–506

    Article  CAS  PubMed  Google Scholar 

  • Meier RK, Dieringer N (1990) The functional role of eye and head movements of the rat during optokinetic nystagmus (OKN). Eur J Neurosci 3:2344

    Google Scholar 

  • Melvill Jones G (1964) Predominance of anti-compensatory oculomotor response during rapid head rotation. Aerospace Med 35:965–968

    Google Scholar 

  • O-Uchi T, Igarashi M, Kubo T (1981) Effect of frontal-eye-field lesion on eye-head coordination in squirrel monkeys. Ann NY Acad Sci 374:656–673

    Article  CAS  PubMed  Google Scholar 

  • Outerbridge JS, Melvill Jones G (1971) Reflex vestibular control of head movement in man. Aerospace Med 42:935–940

    CAS  PubMed  Google Scholar 

  • Peterson BW, Goldberg J (1982) Role of vestibular and neck reflexes in controlling eye and head position. In: Roucoux A, Crommelinck M (eds) Physiological and pathological aspects of eye movements. Documenta Ophthalmologica Proc vol 34, Junk, The Hague, pp 351–362

    Chapter  Google Scholar 

  • Schweigart G, Hoffmann KP (1988) Optokinetic eye and head movements in the unrestrained cat. Behav Brain Res 31:121–129

    Article  CAS  PubMed  Google Scholar 

  • Sirkin DW, Zedek Y, Teitelbaum P (1985) Effects of pontine reticular formation lesions on optokinetic head nystagmus in rats. Exp Brain Res 58:503–509

    Article  CAS  PubMed  Google Scholar 

  • Solomon D, Cohen B (1992a) Stabilization of gaze during circular locomotion in light. I. Compensatory head and eye nystagmus in the running monkey. J Neurophysiol 67:1146–1157

    CAS  PubMed  Google Scholar 

  • Solomon D, Cohen B (1992b) Stabilization of gaze during circular locomotion in darkness. II. Contribution of velocity storage to compensatory eye and head nystagmus in the running monkey. J Neurophysiol 67:1158–1170

    CAS  PubMed  Google Scholar 

  • Tempia F, Ghirardi M, Dotta M, Strata P (1992) Spontaneous gaze shifts in intact head-free rats and following inferior olive and cerebellar lesions. Eur J Neurosci 4:1239–1248

    Article  PubMed  Google Scholar 

  • Vidal PP, Roucoux A, Berthoz A (1982) Horizontal eye position-related activity in neck muscles of the alert cat. Exp Brain Res 46:448–453

    Article  CAS  PubMed  Google Scholar 

  • Wilson VJ, Precht W, Dieringer N (1983) Responses of different compartments of cat's splenius muscle to optokinetic stimulation. Exp Brain Res 50:153–156

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, R.K., Dieringer, N. The role of compensatory eye and head movements in the rat for image stabilization and gaze orientation. Exp Brain Res 96, 54–64 (1993). https://doi.org/10.1007/BF00230438

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00230438

Key words

Navigation