Skip to main content
Log in

Biochemical and cytological bases of metamorphosis in Hydractinia echinata

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Larvae of the marine hydroid Hydractinia echinata Fleming are induced to settle and metamorphose by contact with bacteria of the genus Alteromonas espejiana (Leitz and Wagner 1992). In previous studies the biochemical mechanism for the activation of the larvae was found to include the signal transduction pathway via the phosphatidylinositol cycle and a role for a kinase C-like enzyme was established. In the present investigation laboratory-reared larvae were immunohistochemically stained with antibodies against kinase C and experiments were conducted to investigate protein phosphorylation during initial metamorphic events. A polyclonal antibody against a synthetic peptide derived from a conserved retion of kinases C binds to an antigen in neurosensory cells of the anterior part of the larvae and corresponding nerve fibres. The Western blot reveals major binding to a protein of Mr (relative molecular mass)=67 and two minor bands at Mr=66 and 48. Assays in vivo show that 3 to 25 min after induction of metamorphosis the phosphorylation of a protein with Mr=30 is enhanced. A hypothesis about the mechanism of induction at the cellular and biochemical level is presented which combines most of the ideas now available from our and other groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Amieva, M. R., Reed, C. G., Pawlik, J. R. (1987). Ultrastructure and behavior of the larva of Phragmatoma californica (Polychaeta: Sabellariidae): identification of sensory organs potentially involved in substrate selection. Mar. Biol 95:259–266

    Google Scholar 

  • Arkett, S.A., Chia, F.-S., Goldberg, J.I., Koss, R. (1989). Identified settlement receptor cells in a nudibranch veliger respond to specific cue. Biol Bull. mar. biol. Lab., Woods Hole 176:155–160

    Google Scholar 

  • Barnekow, A., Müller, W. A. (1986). An src-related tyrosine kinase activity in the hydroid, Hydractinia. Differentiation 33: 29–33

    Google Scholar 

  • Baxter, G., Morse, D. E. (1987). G protein und diacylglycerol regulate metamorphosis of planktonic molluscan larvae. Proc. natn. Acad. Sci. U.S.A. 84: 1867–1870

    Google Scholar 

  • Berking, S. (1986). Transmethylation and control of pattern formation in hydrozoa. Differentiation 32: 10–16

    Google Scholar 

  • Berking, S. (1988). Ammonia, tetraethylammonium, barium and amiloride induce metamorphosis in the marine hydroid Hydractinia. Wilhelm Roux Arch. dev. Biol. 197: 1–9

    Google Scholar 

  • Berking, S. (1991). Control of metamorphosis and pattern formation in Hydractinia (Hydrozoa, Cnidaria). BioEssays 13: 323–329

    Google Scholar 

  • Bischoff, A., Fleck, J., Hofmann, D. K. (1991). Phorbol esters induce metamorphosis in Cassiopea andromeda and Cassiopea xamachana (Cnidaria: Scyphozoa). Verh. dt. zool. Ges. 84: 484

    Google Scholar 

  • Blumberg, P. M. (1988). Protein kinase C as the receptor for the phorbol ester tumor promoters: Sixth Rhoads Memorial Award Lecture. Cancer Res. 48: 1–8

    Google Scholar 

  • Burke, R. D. (1983). The induction of metamorphosis of marine invertebrate larvae: stimulus and response. Can. J. Zool. 61: 1701–1719

    Google Scholar 

  • Campbell, R. D. (1983). Preparing histological sections for light microscopy. In: Lehnhoff, H. M. (ed) Hydra, research methods. Plenum Press, New York, p. 121–130

    Google Scholar 

  • Chia, F.-S., Bickell, L. R. (1978). Mechanisms of larval attachment and the induction of metamorphosis in coelenterates: a review. In: Chia, F. S., Rice, M. E. (eds.) Settlement and metamorphosis of marine invertebrate larvae. Elsevier, New York, p. 1–12

    Google Scholar 

  • Chia, F.-S., Koss, R. (1979). Fine structural studies of the nervous system and the apical organ in the planula larva of the sea anemone Anthopleura elegantissima. J. Morph. 160:275–297

    Google Scholar 

  • Crisp, D. J. (1974). Factors influencing the settling of marine invertebrate larvae. In: Grant, P. T., Mackie, A. M. (eds.) Chemoreception in marine organisms. Academic Press, New York, p. 177–265

    Google Scholar 

  • Edwards, N. C., Thomas, M. B., Long, B. A., Amyotte, S. J. (1987). Catecholamines induce metamorphosis in the hydrozoan Halocordyle disticha but not in Hydratinia echinata. Wilhelm Roux Arch. dev. Biol. 196: 381–384

    Google Scholar 

  • Exton, J. H., Taylor, S. J., Angert, G., Cocckino, S. B. (1991). Cell signalling through phospholipid breakdown. Molec. cell. Biochem. 104: 81–86

    Google Scholar 

  • Freeman, G., Ridgway, E. B. (1990). Cellular and intracellular pathways mediating the metamorphic stimulus in hydrozoan planulae. Wilhelm Roux Arch. dev. Biol. 199: 63–79

    Google Scholar 

  • Gschwendt, M., Kittstein, W., Horn, F., Leibersperger, H., Marks, F. (1989). A phorbol-ester and phospholipid-activated, calcium-unresponsive protein kinase in mouse epidermis: characterization and separation from kinase C. J. cell. Biochem. 40: 295–307

    Google Scholar 

  • Henning, G., Benayahu, Y., Hofmann, D. K. (1991). Natural substrates, marine bacteria and a phorbol-ester induce metamorphosis in the soft coral Heteroxenia fuscescens (Anthozoa: Octocorallia). Verh. dt. zool. Ges. 84: 486–487

    Google Scholar 

  • Jensen, R. A., Morse, D. E., Hooker, N., Petty, R. (1980). Artificial induction of larval metamorphosis by free fatty acids. Mar. Ecol. Prog. Ser. 67: 55–71

    Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, Lond 227: 680–685

    Google Scholar 

  • Leitz, T., Klingmann, G. (1990). Metamorphosis in Hydractinia: studies with activators and inhibitors aiming at protein kinase C and potassium channels. Wilhelm Roux Arch dev. Biol. 199: 107–113

    Google Scholar 

  • Leitz, T., Müller, U. (1991). Stimulation of metamorphosis in Hydractinia echinata involves generation of lysophosphatidylcholine. Wilhelm Roux Arch dev. Biol. 200: 249–255

    Google Scholar 

  • Leitz, T., Müller, W. A. (1987). Evidence for the involvement of PI-signaling and diacylglycerol second messengers in the initiation of metamorphosis in the hydroid Hydractinia echinata Fleming. Dev. Biol. 121: 82–89

    Google Scholar 

  • Leitz, T., Wagner, T. (1993). The marine bacterium Alteromonas espejiana induces metamorphosis in the hydroid Hydractinia echinata. Mar. Biol. 115(2): 173–178

    Google Scholar 

  • Leitz, T., Wirth, A. (1991). Vanadate, known to interfere with signal transduction, induces metamorphosis in Hydractinia (Coelenterata; Hydrozoa) and causes profound alterations of the larval and postmetamorphic body pattern. Differentiation 47: 119–127

    Google Scholar 

  • May, G., Müller, W. A. (1975). Aktivitäten von Enzymen des Kohlenhydrat-Stoffwechsels und der Na+, K+-ATPase im Zuge der Embryonalentwicklung und Metamorphose von Hydractinia echinata. Wilhelm Roux Arch. dev. Biol. 177: 235–254

    Google Scholar 

  • Müller, W. A. (1969). Auslösurg der Metamorphose durch Bakterien bei den Larven von Hydractinia echinata. Zool. Jb. (Abt. Anat. Ontog. Tiere). 86: 84–95

    Google Scholar 

  • Müller, W. A. (1973a). Induction of metamorphosis by bacteria and ions in the planulae of Hydractinia echinata; an approach to the mode of action. Pulbs Seto mar. biol. Lab. (Proc. 2nd Intn. Symp. Cnidaria). 20: 195–208

    Google Scholar 

  • Müller, W. A. (1983b). Metamorphoseinduktion bei Planulalarven. I. Der bakterielle Induktor. Wilhelm Roux Arch. dev. Biol. 173: 107–121

    Google Scholar 

  • Müller, W. A. (1985). Tumor promoting phorbol esters induce metamorphosis and multiple head formation in the hydroid Hydractinia. Differentiation 29: 216–222

    Google Scholar 

  • Müller, W. A., Buchal, G. (1973). Metamorphose-Induktion bei Planulalarven; II. Induktion durch monovalente Kationen. Wilhelm Roux Arch. dev. Biol. 173: 122–135

    Google Scholar 

  • Pawlik, J. R., Faulkner, D. J. (1986). Specific free fatty acids induce larval settlement and metamorphosis in the reef-building tube worm Phragmatopoma californica (Fewkes). J. exp. mar. Biol. Ecol. 102: 301–310

    Google Scholar 

  • Pechenik, J. A., Heyman, W. D. (1987). Using KCl to determine size at competence for larvae of the marine gastropod, Crepidula fornica (L.). J. exp. mar. Biol. Ecol. 112: 27–38

    Google Scholar 

  • Plickert, G. (1989). Proportion-altering factor (PAF) stimulates nerve cell formation in Hydractinia echinata. Cell Diff. Devel. 26: 19–28

    Google Scholar 

  • Plickert, G. (1990). Experimental analysis of developmental processes in marine hydroids. In: Marthy, H. J. (ed.) Experimental analysis of developmental processes. Plenum Press, New York, p. 59–81

    Google Scholar 

  • Rana, R. S., Hokin, L. E. (1990). Role of phosphoinositides in transmembrane signaling. Physiol. Rev. 70: 115–164

    Google Scholar 

  • Rando, R. R. (1988). Regulation of protein kinase C activity by lipids. FASEB J 2: 2348–2355

    Google Scholar 

  • Romano, M., Hawiger, J. (1990). Interaction of endotoxic lipid A and lipid X with purified human platelet protein kinase C. J. biol. Chem. 265: 1765–1770

    Google Scholar 

  • Scheltema, R. S. (1974). Biological interactions determining larval settlement of marine invertebrates. Thalassia jugosl. 10: 263–296

    Google Scholar 

  • Schwoerer-Böhning, B., Kroiher, M., Müller, W. A. (1990). Signal transmission and covert prepattern in the metamorphosis of Hydractinia echinata. Wilhelm Roux Arch. dev. Biol 198: 245–251

    Google Scholar 

  • Spindler, K. D., Müller, W. A. (1972). Indiction of metamorphosis by bacteria and by a lithium pulse in the larvae of Hydractinia echniata (Hydrozoa). Wilhelm Roux Arch. dev. Biol. 169: 271–280

    Google Scholar 

  • Thomas, M. B., Freeman, G. Martin, V. J. (1987). The embryonic origin of neurosensory cells in metamorphosis in Phialidium gregarium (Cnidaria, Hydrozoa). Int. J. Invert. Reprod. Dev. (Amsterdam) 11: 265–287

    Google Scholar 

  • Trapido-Rosenthal, H. G., Morse, D. E. (1986). Availability of chemosensory receptors is down-regulated by habituation of larvae to a morphogenetic signal. Proc. natn. Acad Sci. U.S.A. 83: 7658–7662

    Google Scholar 

  • Vandermeulen, J. H., (1974). Studies on reef corals II. Fine structure of planktonic planula larva of Pocillopora damicornis, with emphasis on the aboral epidermis. Mar. Biol. 27 239–249

    Google Scholar 

  • Yool, A. J., Grau, S. M., Hadfield, M. G., Jensen, R. A., Markell, D. A., Morse, D. E. (1986). Excess potassium induces larval metamorphosis in four marine invertebrate species. Biol. Bull. mar. biol. Lab., Woods Hole 170: 255–266

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leitz, T. Biochemical and cytological bases of metamorphosis in Hydractinia echinata . Marine Biology 116, 559–564 (1993). https://doi.org/10.1007/BF00355474

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355474

Keywords

Navigation