Skip to main content

Advertisement

Log in

Growth of the salt marsh periwinkleLittoraria irrorata on fungal and cordgrass diets

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The growth of the salt marsh periwinkleLittoraria irrorata (collected from Sapelo Island, Georgia in 1991, initial shell length 6.2 to 11.5 mm) on various diets was measured. Growth was highest on a diet of standing-dead leaves ofSpartina alterniflora. Periwinkles provided with marsh sediment, yellow-green, sterile, or bacteria-colonized leaves lost organic mass. Fungal-colonized leaves and pure mycelia of fungi common on standing-dead leaves allowed intermediate growth. Growth onS. alterniflora-based diets was negatively correlated with the phenolics content of the food, and positively correlated with its lipid content. No correlation was found between growth and protein content. The digestibility ofS. alterniflora leaves, estimated with the acid-insoluble ash technique, was highest when yellow-green leaves were used. Colonization by fungi or bacteria caused it to decline. ForS. alterniflora-based diets, growth rates were positively correlated with the amount of time spent on the food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, S. D. (1976). Relationship of macrophyte detritus to the salt marsh periwinkle,Littorina irrorata (Say). Ph. D. thesis, Louisiana State University, Baton Rouge, Louisiana

    Google Scholar 

  • Alexander, S. D. (1979). Diet of the periwinkleLittorina irrorata in a Louisiana salt marsh. Gulf Res. Rep. 6: 293–295

    Google Scholar 

  • Atkinson, J. L., Hilton, J. W., Slinger, S. J. (1984). Evaluation of acid-insoluble ash as an indicator of feed digestibility in rainbow trout (Salmo gairdneri). Can. J. Fish. aquat. Sciences 41: 1384–1386

    Google Scholar 

  • Bärlocher, F. (1985). The role of fungi in the nutrition of stream invertebrates. Bot. J. Linn. Soc. 91: 83–94

    Google Scholar 

  • Bärlocher, F., Arsuffi, T. L., Newell, S. Y. (1989a). Digestive enzymes of the saltmarsh periwinkleLittorina irrorata (Mollusca: Gastropoda). Oecologia 80: 39–43

    Google Scholar 

  • Bärlocher, F., Newell, S. Y., Arsuffi, T. L. (1989b) Digestion ofSpartina alterniflora material with and without fungal constituents by the periwinkleLittorina irrorata (Mollusca: Gastropoda). J. exp. mar. Biol. Ecol. 130: 45–54

    Google Scholar 

  • Bebout, B. M. (1988). The role of marine fungi in the food selection and nutrition of the salt marsh periwinkleLittorina irrorata Say (Gastropoda). M. Sc. thesis. University of North Carolina, Chapel Hill, North Carolina

    Google Scholar 

  • Bergbauer, M., Newell, S. Y. (1992). Contribution to lignocellulose degradation and DOC formation from a salt marsh macrophyte by the ascomycetePhaeosphaeria spartinicola. Fedn Eur. microbiol. Soc. (FEMS) Microbiol. Ecol. 86: 341–348

    Google Scholar 

  • Bertness, M. D. (1984). Habitat and community modification by an introduced herbivorous snail. Ecology 65: 370–381

    Google Scholar 

  • Bingham, F. O. (1972). Shell growth in the gastropodLittorina irrorata. Nautilus 85: 136–141

    Google Scholar 

  • Bligh, E. G., Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917

    Google Scholar 

  • Cargill, A. S., Cummins, K. W., Hanson, B. J., Lowry, R. R. (1985a). The role of lipids as feeding stimulants for shredding aquatic insects. Freshwat. Biol. 15: 455–464

    Google Scholar 

  • Cargill, A. S., Cummins, K. W., Hanson, B. J., Lowry, R. R. (1985b). The role of lipids, fungi, and temperature in the nutrition of a shredder caddisfly,Clistoronia magnifica. Freshwat. Invertebr. Biol. 4: 64–78

    Google Scholar 

  • Hamilton, P. V. (1976). Predation onLittorina irrorata (Mollusca: Gastropoda) byCallinectes sapidus (Crustacea: Portunidae). Bull. mar. Sci. 26: 403–409

    Google Scholar 

  • Jones, C. G., Hare, J. D., Compton, S. J. (1989). Measuring plant protein with the Bradford assay. 1. Evaluation and standard method. J. chem. Ecol. 15: 979–992

    Google Scholar 

  • Kates, M. (1986). Techniques of lipidology. Elsevier, Amsterdam

    Google Scholar 

  • Kemp, P. F., Newell, S. Y., Hopkinson, C. S. (1990). Importance of grazing on the saltmarsh grassSpartina alterniflora to nitrogen turnover in a macrofaunal consumer,Littorina irrorata, and to decomposition of standing-deadSpartina. Mar. Biol. 104: 311–319

    Google Scholar 

  • McBride, C. J., Williams, A. H., Henry, R. P. (1989). Effects of temperature on climbing behavior ofLittorina irrorata: on avoiding a hot foot. Mar. Behav. Physiol. 14: 93–100

    Google Scholar 

  • Newell, S. Y. (1993). Decomposition of shoots of a saltmarsh grass: methodology and dynamics of microbial assemblages. Adv. microb. Ecol. 13 (in press)

  • Newell, S. Y., Fallon, R. D., Miller J. D. (1986). Measuring fungal biomass dynamics in standing-dead leaves of a saltmarsh vascular plant. In: Moss, S. T. (ed.) The biology of marine fungi. Cambridge University Press, Cambridge, p. 215–229

    Google Scholar 

  • Newell, S. Y., Fallon, R. D., Miller J. D. (1989). Decomposition and microbial dynamics for standing, naturally positioned leaves of the saltmarsh grassSpartina alterniflora. Mar. Biol. 101: 471–481

    Google Scholar 

  • Newell, S. Y., Miller, J. D., Fallon, R. D. (1987). Ergosterol content of salt-marsh fungi: effect of growth conditions and mycelial age. Mycologia 79: 688–695

    Google Scholar 

  • Rosset, J., Bärlocher, F., Oertli, J. J. (1982). Decomposition of conifer needles and deciduous leaves in two Black Forest and two Swiss Jura streams. Int. Revue ges. Hydrobiol. 67: 695–711

    Google Scholar 

  • Smalley, A. E. (1959). The role of two invertebrate populations,Littorina irrorata andOrchelimum fidicinium, in the energy flow of a salt marsh ecosystem. University Microfilms 59-5678. Ann Arbor, Michigan

  • Stiven, A. E., Hunter, J. T. (1976). Growth and mortality ofLittorina irrorata Say in three North Carolina marshes. Chesapeake Sci. 17: 168–176

    Google Scholar 

  • Stiven, A. E., Kuenzler, E. J. (1979). The response of two salt marsh mollusks,Littorina irrorata andGeukensia demissa, to field manipulations of density andSpartina litter. Ecol. Monogr. 49: 151–171

    Google Scholar 

  • Suberkropp, K. (1992). Interactions with invertebrates. In: Bärlocher, F. (ed.) The ecology of aquatic hyphomycetes. Springer-Verlag, Berlin, p. 118–134

    Google Scholar 

  • Torzilli, A. P., Andrykovitch, G. (1986). Degradation ofSpartina lignocellulose by individual and mixed cultures of saltmarsh fungi. Can. J. Bot. 64: 2211–2215

    Google Scholar 

  • Valiela, I., Koumjian, L., Swain, T., Teal, J. M., Hobbie, J. E. (1979). Cinnamic acid inhibition of detritus feeding. Nature, Lond. 280: 55–57

    Google Scholar 

  • Valiela, I., Reitsma, C. S. (1984). Nitrogen, phenolic acids, and other feeding cues for salt marsh detritivores. Oecologia 63: 350–356

    Google Scholar 

  • Wilkinson, L. (1989). SYSTAT: the system for statistics. SYSTAT Inc., Evanson, Illinois, USA

    Google Scholar 

  • Wilson, J. O. (1985). Decomposition of litter ofSpartina alterniflora in a salt marsh ecosystem; biochemical and geochemical studies. Ph. D. thesis. University of Boston, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. J. Thompson, St. John's

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bärlocher, F., Newell, S.Y. Growth of the salt marsh periwinkleLittoraria irrorata on fungal and cordgrass diets. Mar. Biol. 118, 109–114 (1994). https://doi.org/10.1007/BF00699224

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00699224

Keywords

Navigation