Skip to main content
Log in

Einfluß von salzgehalt und temperatur auf entwicklung, wachstum, fortpflanzung und energiebilanz von Artemia salina

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The influence of salinity and temperature on various life processes of Artemia salina (L.) from the Great Salt Lake, Utah, USA, was investigated. Hatching rate, hatching success, energetics and metabolism of hatching, growth rate, maturation rate and reproductive rate were measured at all combinations of 4 temperature levels (10°, 15°, 20°, 30°C) and 4 salinity levels (5, 15, 32, 70‰S). Optimal temperature-salinity combinations differ for different life cycle stages and parameters. The hatching rate rises with increased temperature and sinks with increased salinity. Hatching success is optimal at 20°C and 32‰S. Larval growth is best at 30°C and 15‰S; however, the maximum growth is attained at 20°C and 32‰S. Maturation rate, onset of reproduction, interval between clutches as well as the total number of offspring are primarily influenced by temperature, whereas the clutch size is a function of salinity. As the temperature is lowered, the capacity to survive low salinities is decreased. At low temperature, reproduction is only possible at high salinity. The energy consumption of the hatching embryo is primarily determined by the salinity level of the medium and is directly proportional to it. Carbohydrate consumption is under all conditions greatest by weight, but measured by its caloric contribution the relative importance decreases with increased energy drain. Additional energy requirements, particularly during the later stages of hatching, are met by raising fat and protein metabolism, fat being the main energy reserve.

Zusammenfassung

  1. 1.

    Die Einwirkung von Salzgehalt und Temperatur auf verschiedene Lebensprozesse von Artemia salina (L.) aus dem Großen Salzsee, Utah, USA, wurde untersucht in 16 Faktorkombinationen: 5; 15; 32; 70‰S und 10°; 15°; 20°; 30°C. Als Futter wurde der Phytoflagellat Dunaliella tertiolecta verwendet. Die Untersuchungen befaßten sich mit Schlüpfrate, Schlüpferfolg, Energiebilanz und Stoffwechsel des Schlüpfprozesses, Wachstumsrate, Maturationsrate und Reproduktionsrate.

  2. 2.

    Die Schlüpfrate wird durch erhöhte Temperatur beschleunigt, durch erhöhte Salinität vermindert.

  3. 3.

    Der Schlüpferfolg ist optimal bei 20°C und 32‰ S; in den beiden Salzgehaltsstufen 15 und 70‰ war er jedoch nur geringfügig schlechter, ebenso bei 30°C in 15, 32 und 70‰S.

  4. 4.

    Zwischen 20° und 15°C und unterhalb 15‰S vermindert sich die Schlüpfrate erheblich.

  5. 5.

    Mit steigender Temperatur nimmt die Wachstumsrate bis 20°C zu und fällt dann wieder leicht ab.

  6. 6.

    Mit steigendem Salzgehlt verbessert sich das Wachstum bis 32‰S und fällt dann wieder leicht ab.

  7. 7.

    Das Wachstumsoptimum bei 32‰S und 20°C bezieht sich nur auf heranwachsende Individuen. larven gedeihen besser bei 15‰S und 30°C. Weibliche A. salina werden größer und sind von Umweltbedingungen stärker beeinflußbar als männliche.

  8. 8.

    Mit fallender Temperatur vermindert sich die Fähigkeit, in geringer Salinität zu leben. Nur bei hohem Salzgehalt konnten sich die Tiere trotz niedriger Temperatur fortpflanzen.

  9. 9.

    Die Zeit bis zur Geschlechtsreife ist abhängig von der Temperatur, kaum aber vom Salzgehalt.

  10. 10.

    Die Zeitspannen bis zum Ablegen des ersten Geleges und die Intervalle zwischen den folgenden Eiablagen werden mit zunehmender Temperatur verkürzt, durch zunehmenden Salzgehalt geringfügig verlängert.

  11. 11.

    Bei höheren Salzgehalten sind die Gelege größer als bei niedrigeren; unterhalb 20°C vermindert sich die Gelegegröße.

  12. 12.

    Die Nachkommenschaft pro Weibchen steigt mit zunehmender Temperatur. Unterhalb 32‰S nimmt die Nachkommenzahl ab.

  13. 13.

    Zwischen Umweltbedingungen und Zystenbildung konnte kein ursächlicher Zusammenhang festgestellt werden. Dauer- und Subitaneier, wie auch Nauplien, wurden unter gleichen Versuchsbedingungen produziert. Nur bei 10°C und 70‰S kam es ausschließlich zur Produktion von Nauplien.

  14. 14.

    Fortpflanzung und Fortpflanzungsrate werden durch nicht-genetische Adaptation nicht merklich beeinflußt.

  15. 15.

    Biochemische und kalorimetrische Untersuchungen wurden an Zysten, Schalen und Nauplien durchgeführt. Die Embryonalentwicklung fand ebenfalls bei verschiedenen Salzgehalts-Temperatur-Kombinationen statt. Da der Embryo energiemäßig ein geschlossenes System darstellt, waren Unterschiede im Verbrauch einzelner biochemischer Komponenten auf die verschiedenen Umweltbedingungen zurückzuführen.

  16. 16.

    Mit steigendem Salzgehalt, und zu einem geringeren Ausmaß mit fallender Temperatur, steigt der Energieverbrauch und dabei fällt das Gewicht des Nauplius.

  17. 17.

    Der Kohlehydratverbrauch ist unter allen Bedingungen gewichtsmäßig am größten, doch der energiemäßige Anteil an der Gesamtbilanz verringert sich mit zunehmendem Energieverbrauch.

  18. 18.

    Der zusätzliche Energiebedarf wird durch zunehmenden Stoffwechsel von Fetten und Proteinen gedeckt, wobei Fett als Hauptenergiereserve zu betrachten ist.

  19. 19.

    Zwei grundlegend verschiedene Phasen des Schlüpfvorgangs unterscheiden sich hinsichtlich des Stoffwechselsubstrats. In der ersten Phase wird vorwiegend Kohlehydrat metabolisiert, in der zweiten dagegen vorwiegend Fett und Protein.

  20. 20.

    Die Optimalkombinationen von Salzgehalt und Temperatur sind je nach den biologischen Kriterien und für die verschiedenen Stadien des Lebenszyklus verschieden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Zitierte Literatur

  • Abonyl, A.: Experimentelle Daten zum Erkennen der Artemia Gattung. Z. wiss. Zool. 114, 95–168 (1915).

    Google Scholar 

  • Allee, W. C., A. E. Emerson, O. Park, T. Park and K. P. Sohmidt: Principles of animal ecology, 837 pp. Philadelphia and London: W. B. Sounders & Co. 1949.

    Google Scholar 

  • Artom, C.: Ricerche sperimentali sul modo di riprodursi dell' Artemia salina Linn. di Cagliari. Biol. Centr. bl. 26, 26–32 (1906).

    Google Scholar 

  • —: La sistematica del genere Artemia in relazione col numero dei cromosomi. Biol. Zbl. 31, 104–108 (1911).

    Google Scholar 

  • —: Nuovi fatti e nuovi problemi sulla biologia e sulla sistematica del genere Artemia. Atti Accad. naz. Lincei Rc. (ser., 5, 29, 1. sem. 468–472, 497–501; 2, sem.: 65–68). (1920).

    Google Scholar 

  • Ballardin, E. e P. Metalli: Osservazoni sulla biologia di Artemia salina (L.). Rc. Ist. Lomb. Sci. Let. 97, 194–254 (1963).

    Google Scholar 

  • Barigozzi, C.: La biologia di Artemia salina Leach studita in aquario. Memorie Soc. tosc. Sci. nat. 78, 137–160 (1939).

    Google Scholar 

  • —: Über die geographische Verbreitung der Mutanten von Artemia salina Leach. Jber. schweiz. Ges. Vererb. S. u. R. 21, 470 (1946).

    Google Scholar 

  • —: Différenciation des génotypes et distribution géographique d'Artemia salina Leach. Année biol. 33, 241–250 (1958).

    Google Scholar 

  • Barnes, H. J.: Studies in the biochemistry of cirripede eggs. J. mar. biol. Ass. U.K. 45, 321–339 (1965).

    Google Scholar 

  • — and M. Barnes: The rate of development of Balanus balanoides (L.) larvae. Limnol. Oceanogr. 3, 29–32 (1958).

    Google Scholar 

  • — and D. M. Findlayson: Seasonal changes in the weight, composition and O2-uptake of Balanus balanoides and B. balanus. J. mar. biol. Ass. U.K. 43, 185–211 (1963).

    Google Scholar 

  • Belěhrádek, K.: Temperature and living matter, 277 pp. Berlin: Borntraeger 1935.

    Google Scholar 

  • Bellini, L.: Studio delle proteinasi e dipeptidasi nelle sviluppo di Artemia salina. Atti Accad. naz. Lincei Rc. 22, 340–346 (1957).

    Google Scholar 

  • —: Osservazioni sugli acidi nucleici nello sviluppo di Artemia salina Leach. Ricerca scient. 30, 816–822 (1960).

    Google Scholar 

  • — e G. S. Lavizzar: Studio delle lipasi nello sviluppo di Artemia salina. Atti Accad. naz. Lincei Rc. 24, 92–95 (1958).

    Google Scholar 

  • Benesch, R.: Zur Ontogenie und Morphologie von Artemia salina L. Zool. Jb. (Anat. Ontog. Tiere) 86, 307–458 (1969).

    Google Scholar 

  • Bertalanffy, L.: Anatomic types and growth types. Am. Nat. 85, 111–117 (1951).

    Google Scholar 

  • —: Quantitative laws in metabolism and growth. Q. Rev. Biol. 32, 217–231 (1957).

    Google Scholar 

  • Blaxter, J. H. S. and G. Hempel: Utilization of the yolk by herring larvae. J. mar. biol. Ass. U.K. 46, 219–234 (1966).

    Google Scholar 

  • Bond, R. M.: Observations on Artemia franciscana Kellogg, especially on the relation of environment to morphology. Int. Revue ges. Hydrobiol. Hydrogr. 28, 117–125 (1933).

    Google Scholar 

  • Boone, E. and L. G. M. Baas Becking: Salt effects on eggs and nauplii of Artemia salina L. J. gen. Physiol. 14, 753–763 (1931).

    Google Scholar 

  • Bowen, S. T.: The genetics of Artemia salina. I. The reproductive cycle. Biol. Bull. mar. biol. Lab., Woods Hole 122, 25–32 (1962).

    Google Scholar 

  • Brewer, R. H.: The phenology of Diaptomus stagnalis (Copepoda: Calanoida): The development and hatching of the egg stage. Physiol. Zoöl. 37, 1–20 (1964).

    Google Scholar 

  • Brooks, J. L.: Turbulence as an environmental determinant of relative growth in Daphnia. Proc. natn. Acad. Sci. U.S.A. 33, 144–148 (1947).

    Google Scholar 

  • Butcher, R. W.: An introductory account of the smaller algae of the British coastal waters. Part I. Introduction and Chlorolphyceae. Fishery Invest., Lond. (Ser. 4) 1, 1–87 (1959).

    Google Scholar 

  • Clegg, J. S.: Free glycerol in dormant cysts of the brine shrimp, Artemia salina, and its disappearance during development. Biol. Bull. mar. biol. Lab., Woods Hole 123, 295–301 (1962).

    Google Scholar 

  • —: The control of emergence and metabolism by external osmotic pressure and the role of free glycerol in developing cysts of Artemia salina. J. exp. Biol. 41, 879–892 (1964).

    Google Scholar 

  • —: The origin of trehalose and its significance during the formation of encysted dormant embryos of Artemia salina. Comp. Biochem. Physiol. 14, 135–143 (1965).

    Google Scholar 

  • —: Protein synthesis in the absence of cell division during the development of Artemia salina embryos. Nature, Lond. 212, 517–519 (1966).

    Google Scholar 

  • —: Metabolic studies of cryptobiosis in encysted embryos of Artemia salina. Comp. Biochem. Physiol. 20, 801–809 (1967).

    Google Scholar 

  • — and Golub, A. L.: Protein synthesis in Artemia salina. II. Resumption of RNA and protein synthesis upon cessation of dormancy in the encysted gastrula. Devl Biol. 19, 178–200 (1969).

    Google Scholar 

  • —, A. H. Warner and F. J. Finamore: Evidence for the function of P1, P4-diguanosine 5′-tetraphosphate in the development of Artemia salina. J. biol. Chem. 242, 1938–1943 (1967).

    Google Scholar 

  • Colowick, S. P. and N. O. Kaplan (eds): Methods in enzymology, Vol. III, 1154 pp. Lipids, pp 299–328; Proteins, pp 447–528. Carbohydrates, pp 75–80. New York: Academic Press 1957.

    Google Scholar 

  • Comita, G. W.: The energy budget of Diaptomus siciloides, Lilljeborg. Verh. int. Verein. theor. angew. Limnol. 15, 646–653 (1964).

    Google Scholar 

  • — and J. J. Comita: Egg production in Trigriopus brevicornis. In: Some contemporary studies in marine science, pp 171–185. New York: Hafner 1966.

    Google Scholar 

  • — and D. W. Schindler: Calorific values of micro-crustacea. Science, N.Y. 140, 1394–1396 (1963).

    Google Scholar 

  • Costlow, J. D. and C. G. Bookhout: The effects of salinity and temperature on larval development of Brachyura reared in the laboratory. Int. oceanogr. Congr. (Reprint) 1, 228–229 (1959).

    Google Scholar 

  • — and R. Monroe: The effect of salinity and temperature on larval development of Sesarma cinereum (Bosc) reared in the laboratory. Biol. Bull. mar. biol. Lab., Woods Hole 18, 183–202 (1960).

    Google Scholar 

  • Crisp, D. J.: A substance promoting hatching and liberation of young in cirripedes. Nature, Lond. 178, p. 263 (1956).

    Google Scholar 

  • Croghan, P. C.: The survival of Artemia salina (L.) in various media. J. exp. Biol. 35, 213–218 (1958a).

    Google Scholar 

  • —: The osmotic and ionic regulation of Artemia salina (L.). J. exp. Biol. 35, 219–233 (1958b).

    Google Scholar 

  • —: The mechanism of osmotic regulation in Artemia salina (L.): The physiology of the branchiae. J. exp. Biol. 35, 234–242 (1958c).

    Google Scholar 

  • —: The mechanism of osmotic regulation in Artemia salina (L.): The physiology of the gut. J. exp. Biol. 35; 243–249 (1958d).

    Google Scholar 

  • —: Ionic fluxes in Artemia salina (L.). J. exp. Biol. 35, 425–436 (1958e).

    Google Scholar 

  • Daday de Dées, E.: Monographie systematique des phyllopodes anostracés. Annls Sci. nat. (Zool. 9) 11, 111–489 (1910).

    Google Scholar 

  • D'Agostino, A. S. and L. Provasoli: Effects of salinity and nutrients on mono-and diaxenic cultures of two strains of Artemia salina. Biol. Bull. mar. biol. Lab., Woods Hole 134, 1–14 (1968).

    Google Scholar 

  • Davis, C. C.: Osmotic hatching in the eggs of some fresh water copepods. Biol. Bull. mar. biol. Lab., Woods Hole 116, 15–29 (1959).

    Google Scholar 

  • —: A study of hatching process in aquatic invertebrates. XIV. An examination of hatching in Palaemonetes vulgaris (Say). Crustaceana 8, 233–238 (1965).

    Google Scholar 

  • —: Hatching processes in eggs of aquatic invertebrates. Verh. int. Verein. theor. angew. Limnol. 16, 1685–1689 (1966).

    Google Scholar 

  • Dawson, R. M. C. and H. Barnes: Studies in the biochemistry of cirripede eggs. II. Changes in lipid composition during development of Balanus balanoides and B. balanus. J. mar. biol. Ass. U.K. 46, 249–261 (1966).

    Google Scholar 

  • Dejdar, E.: Die Korrelation zwischen Kiemensäcken und Nackenschild bei Phyllopoden. Z. wiss. Zool. 136, 422–451 (1930).

    Google Scholar 

  • Dutrieu, J.: Observations biochimiques et physiologiques sur le développement d'Artemia salina Leach. Archs Zool. exp. gén. 99, 1–134 (1960).

    Google Scholar 

  • — et D. Cresta-Blanchine: Resistance des oeufs durables hydratés d'Artemia salina à l'anoxie. C. r. hebd. Séanc. Acad. Sci., Paris (Serie D) 263, 998–1000 (1966).

    Google Scholar 

  • Edmondson, W. T., G. W. Comita and G. C. Anderson: Reproductive rate of copepods in nature and its relation to phytoplanktonic populations. Ecology 43, 625–634 (1962).

    Google Scholar 

  • Ellassen, E.: The energy of metabolism of Artemia salina in relation to body size, seasonal rhythms and different salinities. Univ. Bergen Årb. (Naturv. R) 11, 1–18 (1952).

    Google Scholar 

  • Emerson, D. N.: The metabolism of hatching embryos of the brine shrimp Artemia salina. Proc. S. Dak. Acad. Sci. 42, 131–135 (1963).

    Google Scholar 

  • —: Some aspects of free amino acid metabolism in developing encysted embryos of Artemia salina, the brine shrimp. Comp. Biochem. Physiol. 20, 245–361 (1967).

    Google Scholar 

  • Ewing, R. D. and J. S. Clegg: Lactate dehydrogenase activity and anaerobic metabolism during embryonic development in Artemia salina. Comp. Biochem. Physiol. 31, 297–308 (1969).

    Google Scholar 

  • Faustov, V. S. and A. I. Zotin: Changes in the heat of combustion of the eggs of fishes and amphibians during development. Dokl. Akad. Nauk SSSR 162, 965–968 (1965).

    Google Scholar 

  • Fautrez-Firlefyn, N.: Etude cytochimique des acides nucléiques au cours de la gamétogènése et des premiers stades d'Artemia salina. Archs Biol., Paris 62, 391–438 (1951).

    Google Scholar 

  • —: Protéines, lipides et glucides dans l'oeuf d'Artemia salina. Archs Biol., Paris 68, 249–294 (1957).

    Google Scholar 

  • Flüchter, J. and T. J. Pandian: Rate and efficiency of yolk utilization in developing eggs of the sole, Solea solea. Helgoländer wiss. Meeresunters. 18, 53–60 (1968).

    Google Scholar 

  • Flügel, H.: Zum Problem der Osmoregulation im tropischen Brackwasser. Naturwissenschaften 46, 213 (1959).

    Google Scholar 

  • Frisch, K. von und H. Kumpelwieser: Über den Einfluß der Lichtfarbe auf die phototaktischen Reaktionen niederer Krebse. Biol. Zbl. 33, 517–522 (1913).

    Google Scholar 

  • Gajewski, N.: Über die Variabilität bei Artemia salina. Int. Revue ges. Hydrobiol. Hydrogr. 10, 139–159 und 299–309 (1922).

    Google Scholar 

  • Gauld, D. T.: Swimming and feeding in crustacean larvae: the nauplius larvae. Proc. zool. Soc. Lond. 132, 31–50 (1959).

    Google Scholar 

  • Gibor, A.: The culture of brine algae. Biol. Bull. mar. biol. Lab., Woods Hole 111, 223–230 (1956a).

    Google Scholar 

  • —: Some ecological relations between phyto-and zooplankton. Biol. Bull. mar. biol. Lab., Woods Hole 111, 230–234 (1956b).

    Google Scholar 

  • Gilchrist, B. M.: Haemoglobin in Artemia. Proc. R. Soc. (Ser. B) 143, 136–146 (1954).

    Google Scholar 

  • —: The oxygen consumption of Artemia salina in different salinities. Hydrobiologia 8, 54–65 (1956).

    Google Scholar 

  • —: The oxygen consumption of Artemia salina (L.). Hydrobiologia 12, 27–37 (1959).

    Google Scholar 

  • —: Growth and form of the brine shrimp Artemia salina (L.). Proc. zool. Soc. Lond. 134, 221–235 (1960).

    Google Scholar 

  • —: Distribution and relative abundance of carotenoid pigments of Anostraca (Crustacea: Branchiopoda). Comp. Biochem. Physiol. 24, 123–147 (1968).

    Google Scholar 

  • Gillbricht, M.: Bestimmung abnorm hoher Salzgehalte in seewasserähnlichen Salzlösungen. Helgoländer wiss. Meeresunters. 16, 67–74 (1967).

    Google Scholar 

  • Goldschmidt, E.: Fluctuation in chromosome number in Artemia salina. J. Morphol. 91, 111–133 (1952).

    Google Scholar 

  • Golub, A. and J. S. Clegg: Protein synthesis in Artemia salina embryos. I. Studies on polyribosomes. Devl Biol. 17, 644–656 (1968).

    Google Scholar 

  • Grainger, J. N. R.: The effects of changes of temperature on the respiration of certain crustacea. Nature, Lond. 178, 930–931 (1956).

    Google Scholar 

  • —: First stages of adaptation of poikilotherms to temperature changes. In: Physiological adaptations, pp 1–85. Ed. by C. L. Prosser. Washington: Am. Physiol. Soc. 1958.

    Google Scholar 

  • Grosch, D. S.: The survival of Artemia populations in radioactive sea water. Biol. Bull. mar. biol. Lab., Woods Hole 123, 302–316 (1962).

    Google Scholar 

  • Gross, F.: Untersuchungen über die Polyploidie und die Variabilität bei Artemia salina. Naturwissenschaften 20, 962–967 (1932).

    Google Scholar 

  • Hardy, A. C.: The ecological relation between the herring and the plankton investigated with the plankton indicator. J. mar. biol. Ass. U.K. 22, 97–100 (1936).

    Google Scholar 

  • Heath, A. C.: The external development of certain phyllopods. J. Morphol. 38, 453–463 (1924).

    Google Scholar 

  • Hentschel, E.: Die postembryonalen Entwicklungsstadien von Artemia salina Leach bei verschiedenen Temperaturen (Anostraca, Crustacea). Zool. Anz. 180, 372–384 (1968).

    Google Scholar 

  • Horne, F. R.: The effect of digestive enzymes on the hatchability of Artemia salina eggs. Trans. Am. microsc. Soc. 85, 271–274 (1966).

    Google Scholar 

  • Hsu, W. J., C. O. Chichester and B. H. Davies: The metabolism of β carotene and other carotinoids in the brine shrimp Artemia salina L. (Crustacea: Branchiopoda). Comp. Biochem. Physiol. 32, 69–80 (1970).

    Google Scholar 

  • Hultin, T. and J. E. Morris: The ribosomes of encysted embryos of Artemia salina during cryptobiosis and resumption of development. Devl Biol. 17, 143–164 (1968).

    Google Scholar 

  • Ivlev, V. S.: Eine Mikromethode zur Bestimmung des Kaloriengehalts von Nährstoffen. Biochem. Z. 275, 49–55 (1935).

    Google Scholar 

  • —: Transformation of energy by aquatic animals. Int. Revue ges. Hydrobiol. Hydrogr. 38, 449–458 (1939).

    Google Scholar 

  • Jacobi, E. E. and L. G. M. Baas Becking: Salt antagonism and effect of concentration in nauplii of Artemia salina L. Tijdschr. Ned. Dierk. Vereen. (Ser. 3) 3, 145–153 (1933).

    Google Scholar 

  • Jennings, R. H. and D. M. Whitaker: The effect of salinity upon the rate of excystment of Artemia. Biol. Bull. mar. biol. Lab., Woods Hole 80, 194–201 (1941).

    Google Scholar 

  • Jensen, A. C.: Some observations on Artemia gracilis, the brine shrimp of the Great Salt Lake. Biol. Bull. mar. biol. Lab., Woods Hole 34, 18–33 (1918).

    Google Scholar 

  • Keilin, D.: The problem of anabiosis or latent life: history and current concepts. Proc. R. Soc. 150, 149–191 (1958).

    Google Scholar 

  • Khmeleva, N. N.: Energy transformation in Artemia salina (L.). Dokl. Akad. Nauk SSSR 175, 934–937 (1967).

    Google Scholar 

  • Kinne, O.: Zur Biologie und Physiologie von Gammarus duebeni Lillj., I. Z. wiss. Zool. 157, 427–491 (1953).

    Google Scholar 

  • —: Über den Einfluß des Salzgehaltes und der Temperatur auf Wachstum, Form und Vermehrung bei dem Hydroidpolypen Cordylophora caspia (Pallas), Athecata, Clavidae. Zool. Jb. 66, 565–683 (1956).

    Google Scholar 

  • —: Adaptation to salinity variation—some facts and problems. In: Physiological adaptation, pp 1–185. Ed. by C. L. Prosser. Washington: Am. Physiol. Soc. 1958.

    Google Scholar 

  • —: Gammarus salinus — Einige Daten über den Umwelteinfluß auf Wachstum, Häutungsfolge, Herzfrequenz und Eientwicklungsdauer. Crustaceana 1, 208–217 (1960).

    Google Scholar 

  • —: Growth, molting frequency, heart beat, number of eggs and incubation time in Gammarus zaddachi exposed to Crustaceana 2, 26–36 (1961).

    Google Scholar 

  • Kinne, O.: Über den Einfluß des Salzgehaltes auf verschiedene Lebensprozesse des Knochenfisches Cyprinodon macularis. 3. Meeresbiol. Symposium, Bremerhaven, pp 49–66 (1963a).

  • —: Adaptation a primary mechanism of evolution. In: Phylogeny and evolution of crustacea, pp 27–50. Ed. by H. B. Whittington and W. D. I. Rolfe. Cambridge, Mass.: Mus. comp. Zool. Harvard Univ. 27–50 (1963b).

    Google Scholar 

  • —: The effects of temperature and salinity on marine and brackish water animals. I. Temperature. In: Oceanogr. mar. Biol., Ann. Rev. Vol. 1, pp 1–548. London: George Allen & Unwin Ltd. 1963c.

    Google Scholar 

  • —: The effects of temperature and salinity on marine and brackish water animals. II. Salinity and temperature. Oceanogr. mar. Biol., Ann. Rev. Vol. 2, pp 281–339. London: George Allen & Unwin Ltd. 1964a.

    Google Scholar 

  • —: Non-genetic adaptation to temperature and salinity. Helgoländer wiss. Meeresunters. 9, 433–458 (1964b).

    Google Scholar 

  • —: Temperature, animals: invertebrates. In: Marine ecology. Vol. I: Environmental factors; part 1, pp 407–514. Ed. by O. Kinne. London: Wiley-Interscience 1970a.

    Google Scholar 

  • — (Ed.): Marine ecology. Vol. I: Environmental factors, part 1. 681 pp. London: Wiley-Interscience 1970b.

    Google Scholar 

  • — and E. M. Kinne: Rates of development in embryos of a cyprinodont fish exposed to different temperature-salinity-oxygen combinations. Can. J. Zool. 40, 231–253 (1962).

    Google Scholar 

  • — und H. W. Rotthauwe: Biologische Beobachtungen und Untersuchungen über die Blutkonzentration an Heteropanope tridentatus Maitland (Dekapoda). Kieler Meeresforsch. 8, 212–217 (1952).

    Google Scholar 

  • Kuenen, D. J.: Systematical and physiological notes on the brine shrimp, Artemia. Archs néerl. Zool. 3, 1–90 (1939).

    Google Scholar 

  • Lindner, F.: Morphology and taxonomy of the Branchiopoda Anostraca. Zool. Bidr. Upps. 20, 101–302 (1941).

    Google Scholar 

  • Lochhead, J. H.: Artemia, the brine shrimp. Turtox News 19, 41–45 (1941).

    Google Scholar 

  • —: Artemia. In: Selected invertebrate types, pp 394–399. New York: John Wiley & Sons, Inc. 1950.

    Google Scholar 

  • —: Oviparity versus ovoviviparity in the brine shirimp, Artemia. Biol. Bull. mar. biol. Lab., Woods Hole 121, p. 396 (1961).

    Google Scholar 

  • — and M. S. Lochhead: The egg shells of the brine shrimp, Artemia. Anat. Rec. (Suppl. 75) 78, 75–76 (1940).

    Google Scholar 

  • —: Studies on blood and related tissues in Artemia (Crustacea: Anostraca). J. Morphol. 68, 593–632 (1941).

    Google Scholar 

  • Lovegrove, T.: The determination of the dry weight of plankton and the effect of various factors on the values obtained. In: Some contemporary studies in marine science, Ed. by H. Barnes. London: Allen & Unwin 1966.

    Google Scholar 

  • La Marche, P. H., J. D. Cassidy, O. P. Cassidy and D. S. Grosch: Chromosome preparation in Artemia salina. Biol. Bull. mar. biol. Lab., Woods Hole 137, 407 (1969).

    Google Scholar 

  • Marshall, S. M. and A. P. Orr: On the biology of Calanus finmachicus. VII. Factors affecting egg production. J. mar. biol. Ass. U.K. 30, 527–547 (1952).

    Google Scholar 

  • —: Hatching in Calanus finmarchicus and some other copepods. J. mar. biol. Ass. U.K. 33, 393–401 (1954).

    Google Scholar 

  • Martin, E. G. and B. C. Wilbur: Salt antagonism in Artemia. Am. J. Physiol. 55, 290–291 (1921).

    Google Scholar 

  • Mathias, P.: Sur le développement de l'oeuf d'un Crustacé Phyllopode, Artemia salina. C. r. hebd. Séanc. Acad. Sci., Paris 194, 1195–1197 (1932).

    Google Scholar 

  • —: Sur la biologie de l'Artemia salina L. Annls Sci. nat. Zool. 17 10, 433–439 (1934).

    Google Scholar 

  • —: Biologie des crustacés phyllopodes, 107 pp. Act. Sci. Ind. 447. Hermann & Cie. Paris (1937).

    Google Scholar 

  • Muramatsu, S.: Studies on the physiology of Artemia embryos. I. Respiration and its main substrate during the early development of the encysted embryo. Embryologia 5, 95–106 (1960).

    Google Scholar 

  • —: Studies on the physiology of Artemia embryos. II. The energy-rich phosphate in the encysted embryo. Embryologia 7, 39–46 (1962).

    Google Scholar 

  • Nakanishi, Y. H., T. Iwasaki, T. Okigaki and H. Kato: Cytological studies of Artemia salina L. I. Embryonic development without cell multiplication after the blastula in encysted dry eggs. Annotnes zod. jap. 35, 223–228 (1962).

    Google Scholar 

  • Needham, J.: Biochemistry and morphogenesis, 785 pp. New York and London: Cambridge University Press 1950.

    Google Scholar 

  • Nicol, J. A. C.: The biology of marine animals, 707 pp. New York: Interscience Publ. 1960.

    Google Scholar 

  • Odum, H. T. and R. H. Pinkerton: Time speed regulator: The optimum efficiency for maximum power output in physical and biological systems. Am. Sci. 43, 331–343 (1955).

    Google Scholar 

  • Paffenhöfer, G. A.: Caloric content of larvae of the brine shrimp Artemia salina. Helgoländer wiss. Meeresunters. 16, 130–135 (1967).

    Google Scholar 

  • —: Nahrungsaufnahme, Stoffumsatz und Energiehaushalt des marinen Hydroidpolypen Clava multicornis. Helgoländer wiss. Meeresunters. 18, 1–44 (1968).

    Google Scholar 

  • — und H. Rosenthal: Trockengewicht und Kaloriengehaltsich entwickelnder Heringseier. Helgoländer wiss. Meeresunters. 18, 45–52 (1968).

    Google Scholar 

  • Paine, R. T.: Ash and calorie determination of sponge and opisthobranch tissues. Ecology 45, 384–387 (1964).

    Google Scholar 

  • Pandian, T. J.: Changes in chemical composition and caloric content of developing eggs of the shrimp Crangon crangon. Helgoländer wiss. Meeresunters. 16, 216–224 (1967).

    Google Scholar 

  • —: Yolk utilization in the gastropod Crepidula fornicata. Mar. Biol. 3, 117–121 (1969a).

    Google Scholar 

  • Pandian, T. J.: Nahrungsaufnahme und Nahrungskonversion bei der Kliesche Limanda limanda. Dissertation, 87 pp. Universität Kiel 1969b.

  • —: Ecophysiological studies on the developing eggs and embryos of the European lobster Homarus gammarus. Mar. Biol. 5, 154–168 (1970a).

    Google Scholar 

  • —: Yolk utilization and hatching time in the Canadian lobster Homarus americanus. Mar. Biol. 7, 249–254 (1970b).

    Google Scholar 

  • — and K. H. Schumann: Chemical composition and caloric content of egg and zoea of the hermit crab Eupagurus bernhardus. Helgoländer wiss. Meeresunters. 16, 225–230 (1967).

    Google Scholar 

  • Panikkab, N. K.: Temperature and osmotic behavior. Nature, Lond. 146, 366–367 (1940).

    Google Scholar 

  • —: Osmoregulation in some palemonid prawns. J. mar. biol. Ass. U.K. 25, 317–359 (1941).

    Google Scholar 

  • Parr Instrument Company: Instructions for the No. 1411 combustion calorimeter, manual 128. Illinois: Molien 1958.

    Google Scholar 

  • Parr Instrument Company: Oxygen bomb calorimetery and combustion methods, manual 130. Illinois: Molien 1960.

    Google Scholar 

  • Patel, B. and D. J. Crisp: The influence of temperature on the breeding and the molting activities of some warm-water species of operculate barnacles. J. mar. biol. Ass. U.K. 39, 667–680 (1960a).

    Google Scholar 

  • —: Rates of development of the embryos of several species of barnacles. Physiol. Zoöl. 33, 104–119 (1960b).

    Google Scholar 

  • Pennak, R. W.: The dynamics of freshwater plankton. Ecol. Monogr. 16, 339–356 (1946).

    Google Scholar 

  • Potts, W. T. W.: The energetics of osmotic regulation in brackish-and fresh-water animals. J. exp. Biol. 31, 618–630 (1954).

    Google Scholar 

  • Price, S.: Dimethyl sulfoxide (DMSO); Failure to penetrate encysted Artemia embryos. Proc. Soc. exp. Biol. Med. 26, 398–399 (1967).

    Google Scholar 

  • Prosser, C. L.: Proposal for study of physiological variation in marine animals. Année Biol. 33, 191–197 (1958).

    Google Scholar 

  • Provasoli, L.: The quality of food. In: Marine biology, Vol. 3, 313 pp. New York: Academy of Sciences 1966.

    Google Scholar 

  • — and A. S. D'Agostino: Development of artificial media for Artemia salina. Biol. Bull. mar. biol. Lab., Woods Hole 136, 434–453 (1969).

    Google Scholar 

  • — and D. Conklin: Factors inducing fertility in aseptic Crustacea. Helgoländer wiss. Meeresunters. 20, 443–454 (1970).

    Google Scholar 

  • — and K. Shrashi: Axenic cultivation of the brine shrimp Artemia salina. Biol. Bull. mar. biol. Lab., Woods hole 117, 347–355 (1959).

    Google Scholar 

  • — and R. Lance: Nutritional idiosyncrasies of Artemia and Tigriopus in monoxenic culture. Ann. N.Y. Acad. Sci. 77, 250–261 (1959).

    Google Scholar 

  • Reeve, M. R.: The filter feeding of Artemia. 1. In pure cultures of plant cells. J. exp. Biol. 40, 195–206 (1963a).

    Google Scholar 

  • —: The filter feeding of Artemia. 2. In suspensions of various particles. J. exp. Biol. 40, 207–214 (1963b).

    Google Scholar 

  • —: The filter feeding of Artemia. 3. Fecal pellets and their associated membranes. J. exp. Biol. 40, 215–222 (1963c).

    Google Scholar 

  • —: Growth efficiency in Artemia under laboratory conditions. Biol. Bull. mar. biol. Lab., Woods Hole 125, 133–145 (1963d).

    Google Scholar 

  • —: Feeding. In: Marine biology, 313 pp. New York: Academy of Sciences 1966.

    Google Scholar 

  • Reeve, M. R.: The biology of Chaetognatha. I. Quantitative aspects of growth and egg production in Sagitta hispida. Symposium on Marine Food Chains, Aarhus 1968.

  • Relyea, G. M.: The brine shrimp of the Great Salt Lake. Am. Nat. 71, 612–616 (1937).

    Google Scholar 

  • Richman, S.: The transformation of energy by Dapnia pulex. Ecol. Monogr. 28, 273–291 (1958).

    Google Scholar 

  • Robertson, J. D.: Osmotic and ionic regulation. In: Physiology of Crustacea, 670 pp. Vol. I, pp 317–340. Ed. by T. H. Waterman. New York: Academic Press 1960.

    Google Scholar 

  • Ryther, J. H. R.: Inhibitory effects of phytoplankton upon the feeding of Daphnia magna with reference to growth, reproduction and survival. Ecology 35, 522–533 (1954).

    Google Scholar 

  • Schlieper, C. Z.: Über die Einwirkung niederer Salzkonzentrationen auf marine Organismen. Z. vergl. Physiol. 9, 478–514 (1929).

    Google Scholar 

  • Schlosser, J. A.: Extrait d'un lettre de M. le Docteur Schlosser, concernant un Insecte peu connu. Observations periodiques sur la physique etc. de Gautier 1756.

  • Schmankewitsch, W. J.: Über das Verhältnis der Artemia salina Miln. Edw. zur Artemia mühlhausenii Miln. Edw. und dem Genus Branchipus Schaeff. Z. wiss. Zool. (Suppl.) 25, 103–116 (1875).

    Google Scholar 

  • Schreiber, E.: Die Reinkultur von marinen Phytoflagellaten und deren Bedeutung für die Erforschung der Produktionsfähigkeit des Meerwassers. Helgoländer wiss. Meeresunters. 16 (10), 1–71 (1927).

    Google Scholar 

  • Segur, J. B.: In: Glycerol, (Symp.) p. 174. Ed. by C. S. Miner and N. N. Dalton. New York: Dalton Rheinhold Publ. Corp. 1953.

    Google Scholar 

  • Seifert, R.: Raumorientierung und Phototaxis der anostraken Euphyllopoden (Versuche an Chirocephalus und Artemia). Z. vergl. Physiol. 16, 111–184 (1932).

    Google Scholar 

  • Slobodkin, L. B.: In: Advances in ecological research, Vol. 1 (Symp.) pp 69–102. Ed. by J. B. Cragg. New York: Academic Press 1962.

    Google Scholar 

  • — and S. Richman: Calories/gram in species of animals. Nature, Lond. 191, 629 (1961).

    Google Scholar 

  • Smith, R. I.: A note on the tolerance of low salinities by nereid polychaetes and its relation to temperature and reproductive habits. Année Biol. 33, 93–107 (1958).

    Google Scholar 

  • Stella, E.: The phaenotypical characteristics and the geographical distribution of several biotypes of Artemia salina L. Z. indukt. Abstamm.-u. VererbLehre 65, 412–446 (1933).

    Google Scholar 

  • Tha Myint: New details of exeystment of Artemia salina Leach. Proc. La Acad. Sci. 19, 24–28 (1956).

    Google Scholar 

  • Urbani, E.: Protidi, glucidi e lipidi nello sviluppo di Artemia salina. Acta Embryol. Morphol. exp. 2, 171–194 (1959).

    Google Scholar 

  • Verwey, J.: A plea for the study of temperature influence on osmotic regulation. Année Biol. 33, 129–149 (1958).

    Google Scholar 

  • Warner, A. H. and F. J. Finamore: Nucleotide metabolism during brine shrimp embryogenesis. J. biol. Chem. 242, 1933–1937 (1966).

    Google Scholar 

  • — and D. K. McClean: Studies on biosynthesis and the role of diguanosine tetraphosphate during growth and development of Artemia salina. Devl Biol. 18, 278–293 (1968).

    Google Scholar 

  • Warren, H., D. Kuenen and L. G. M. Baas Becking: On the relation between internal and external medium in Artemia salina (L.) var. principalis Simon. Proc. K. ned. Akad. Wet. 41, 873–878 (1938).

    Google Scholar 

  • Weisz, P. B.: The space-time pattern of segment formation in Artemia salina. Biol. Bull. mar. biol. Lab., Woods Hole 91, 119–140 (1946).

    Google Scholar 

  • Whitaker, D. M.: The tolerance of Artemia cysts for cold and high vacuum. J. exp. Biol. 83, 391–399 (1940).

    Google Scholar 

  • Wikgren, B. J.: Osmotic regulation in some aquatic animals with special reference to the influence of temperature. Acta zool. fenn. 71, 1–102 (1953).

    Google Scholar 

  • Winkler, L. W.: Die Bestimmung des im Wasser gelösten Sauerstoffs. Ber. dt. chem. Ges. 21, 2843–2854 (1888).

    Google Scholar 

  • Zahl, P. A.: Life in a “dead” sea — Great Salt Lake. Nat. geogr. Mag. 132, 252–263 (1967).

    Google Scholar 

  • Zein-Eldin, Z. P.: Effect of salinity on growth of post-larval panaeid shrimp. Biol. Bull. mar. biol. Lab., Woods Hole 125, 188–196 (1963).

    Google Scholar 

  • — and G. W. Griffith: The effect of temperature upon the growth of laboratory-held post-larval Penaeus aztecus. Biol. Bull. mar. biol. Lab., Woods Hole 131, 186–196 (1966).

    Google Scholar 

  • Ziegelmayer, W.: Untersuchungen zum Quellungsmechanismus von Eizellen. Z. Zellforsch. mikrosk. Anat. 4, 73–124 (1927).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Hamburg

Diese Dissertation wurde der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Hamburg als eine der Voraussetzungen zur Erlangung der Doktorwürde vorgelegt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Hentig, R. Einfluß von salzgehalt und temperatur auf entwicklung, wachstum, fortpflanzung und energiebilanz von Artemia salina . Marine Biology 9, 145–182 (1971). https://doi.org/10.1007/BF00348253

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00348253

Navigation