Skip to main content

Advertisement

Log in

Cardiac iodine-123 metaiodobenzylguanidine uptake in animals with diabetes mellitus and/or hypertension

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the use of the noradrenaline analogue iodine-123 metaiodobenzylguanidine ([123I]MIBG) for the assessment of cardiac sympathetic activity in the presence of diabetes mellitus and/or hypertension in animal models. One model used Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) rendered diabetic at 12 weeks of age by an intravenous injection of streptozotocin (STZ). The other model used lean and obese Zucker rats. In all groups basic haemodynamic values were established and animals received an intravenous injection of 50 μCi [123I]MIBG. Initial myocardial uptake and washout rates of [123I]MIBG were measured scintigraphically during 4 h. After sacrifice, plasma noradrenaline and left cardiac ventricular β-adrenoceptor density was determined. The diabetic state, both in STZ-treated rats (direct induction) and in obese Zucker rats (genetic induction), appeared to induce a lower cardiac density of β-adrenoceptors, indicative of increased sympathetic activity. Cardiac [123I]MIBG then showed increased washouts, thereby confirming enhanced noradrenergic activity. This parallism of results led to the conclusion that [123I]MIBG wash-out measurements could provide an excellent tool to assess cardiac sympathetic activity non-invasively. However, in hypertension (WKY vs SHR), both parameters failed to show parallelism: no changes in β-adrenoceptor density were found, whereas [123I]MIBG wash-out rate was increased. Thus, either [123I]MIBG washout or ß-adrenoceptor density may not be a reliable parameter under all circumstances to detect changes in the release of noradrenaline. Changes in the initial uptake of [123I]MIBG were observed as well. This may be a good marker for the disappearance of cardiac innervation, but it seems not to be a good parameter for distinguishing between loss of sympathetic innervation and enhanced uptake of noradrenaline in pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christlieb AR. Diabetes and hypertensive vascular disease. Mechanisms and treatment.Am J Cardiol 1973; 32: 592–606.

    PubMed  Google Scholar 

  2. Epstein M, Sowers JR. Diabetes mellitus and hypertension.Hypertension 1992; 19: 403–418.

    PubMed  Google Scholar 

  3. The Hypertension in Diabetes Study Group. Hypertension in diabetes study (HDS). I. Prevalence of hypertension in newly presenting type 2 diabetic patients and the association with risk factors for cardiovascular and diabetic complications.J Hypertens 1993; 11: 309–317.

    Google Scholar 

  4. The Hypertension in Diabetes Study Group. Hypertension in diabetes study (HDS). 11. Increased risk of cardiovascular complications in hypertensive type 2 diabetic patients.J Hypertens 1993; 11: 319–325.

    Google Scholar 

  5. Sato T, Nara Y, Note S, Yamori Y. New establishment of hypertensive diabetic animal models: neonatally streptozotocintreated spontaneously hypertensive rats.Metabolism 1987; 36: 731–737.

    PubMed  Google Scholar 

  6. Iwase M. A new animal model of non-insulin-dependent diabetes mellitus with hypertension: neonatal streptozotocin treatment in spontaneously hypertensive rats.Fukuoka Igaku Zasshi 1991; 82: 415–427.

    PubMed  Google Scholar 

  7. Ramos OL. Diabetes mellitus and hypertension. State of the art lecture.Hypertension 1988; 11:114–118.

    Google Scholar 

  8. Ferrari P, Picotti GB, Minotti E, Bondiolotti GP, Caravaggi AM, Bianchi G. Plasma concentrations of cetacholamines in two strains of spontaneously hypertensive rats at different ages.Clin Sci 1981; 61 Suppl 7: 199s-202s.

    PubMed  Google Scholar 

  9. Ekas RD JR, Lokhandwala MF. Sympathetic nerve function and vascular reactivity in spontaneously hypertensive rats.Am J Physiol 1981; 241: R379-R384.

    PubMed  Google Scholar 

  10. Abboud FM. The sympathetic system in hypertension. Stateof-the-art review.Hypertension 1982; 4: 208–225.

    PubMed  Google Scholar 

  11. Mantysaari M, Kuikka J, Mustonen J et al. Noninvasive detection of cardiac sympathetic nervous dysfunction in diabetic patients using [123I]metaiodobenzylguanidine.Diabetes 1992; 41: 1069–1075.

    PubMed  Google Scholar 

  12. Weiss F, Heydenreich F. A non-invasive approach to cardiac autonomic neuropathy in patients with diabetes mellitus.Clin Physiol 1990; 10: 137–145.

    PubMed  Google Scholar 

  13. Bruce DG, Chisholm DJ, Storlien LH, Kraegen EW, Smythe GA. The effects of sympathetic nervous system activation and psychological stress on glucose metabolism and blood pressure in subjects with type 2 (non-insulin-dependent) diabetes mellitus.Diabetologia 1992; 35: 835–843.

    PubMed  Google Scholar 

  14. Daly PA, Landsberg L. Hypertension in obesity and NIDDM. Role of insulin and sympathetic nervous system.Diabetes Care 1991; 14: 240–248.

    PubMed  Google Scholar 

  15. Landsberg L. Hyperinsulinemia: possible role in obesity-induced hypertension.Hypertension 1992, 19 Suppl I: I–61-I–66.

    Google Scholar 

  16. Anderson J, Rocchini AP. Hypertension in individuals with insulin-dependent diabetes mellitus.Pediatr Clin North Am 1993; 40: 93–104.

    PubMed  Google Scholar 

  17. Mancia G, Grassi G, Parati G, Daffonchio A. Evaluating sympathetic activity in human hypertension.J Hypertens 1993; 11 Suppl 5: S13-S19.

    PubMed  Google Scholar 

  18. Wyss JM, Oparil S, Chen YF. Role of the central nervous system in hypertension. In: Laragh JH, Brenner BM, eds. Hypertension: pathophysiology, diagnosis and management. New York: Raven Press; 1990: 679–701.

    Google Scholar 

  19. Tomlinson KC, Gardiner SM, Hebden RA, Bennett T. Functional consequences of streptozotocin-induced diabetes mellitus, with particular reference to the cardiovascular system.Pharmacol Rev 1992; 44: 103–150.

    PubMed  Google Scholar 

  20. Grassi G, Seravalle G, Calhoun DA, Matturri M, Mancia G, Zanchetti A. Monitoring of sympathetic activity in man: physiology and pharmacology [review].Eur Heart J 1992; 13 Suppl A: 22–25.

    Google Scholar 

  21. Mancia G, Grassi G. Assessment of sympathetic cardiovascular influences in man: haemodynamic and Immoral markers versus microneurography [review].Clin Anton Res 1991; 1: 245–249.

    Google Scholar 

  22. Bristow MR, Hershberger RE, Port JD et al. Beta-adrenergic pathways in nonfailing and failing human ventricular myocardium.Circulation 1990; 82:I12-I25.

    PubMed  Google Scholar 

  23. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity.Circulation 1986; 73: 615–621.

    PubMed  Google Scholar 

  24. Daly PA, Sole MJ. Myocardial catecholamines and the pathophysiology of heart failure.Circulation 1990; 82 Suppl I: I–35-I–43.

    Google Scholar 

  25. Pierpont GL, Francis GS, DeMaster EG et al. Heterogeneous myocardial catecholamine concentrations in patients with congestive heart failure.Am J Cardiol 1987; 60: 316–321.

    PubMed  Google Scholar 

  26. Packer M, Lee WH, Kessler PD, Gottlieb SS, Bernstein JL, Kukin ML. Role of neurohumoral mechanisms in determining survival in patients with severe chronic heart failure.Circulation 1987; 75 Suppl IV: IV–80-IV–92.

    Google Scholar 

  27. Thomas JA, Marks BH. Plasma norepinephrine in congestive heart failure.Am J Cardiol 1978; 41: 233–243.

    PubMed  Google Scholar 

  28. Colucci WS. In vivo studies of myocardial β-adrenergic receptor pharmacology in patients with congestive heart failure.Circulation 1990; 82: I–44-I–52.

    Google Scholar 

  29. Glowniak JV, Turner FE, Gray LL et al. Iodine-123 metaiodobenzylguanidine imaging of the heart in idiopathic congestive cardiomyopathy and cardiac transplants.J Nucl Med 1989; 30: 1182–1191.

    PubMed  Google Scholar 

  30. Mangner TJ, Tobes MC, Wieland DW et al. Metabolism of iodine-131 metaiodobenzylguanidine in patients with metastatic pheochromocytoma.J Nucl Med 1986; 27: 37–44.

    PubMed  Google Scholar 

  31. Sisson JC, Shapiro B, Meyers L et al. Metaiodobenzylguanidine to map scintigraphically the adrenergic nervous system in man.J Nucl Med 1987; 28: 1625–1636.

    PubMed  Google Scholar 

  32. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem 1976; 72: 248–254.

    PubMed  Google Scholar 

  33. Engel G, Hoyer D, Berthold R et al. [125I]Iodocyanopindolol, a new radioligand for β-adrenoceptors: identification and quantitation of subclasses of β-adrenoceptors in guinea pig.Naunyn Schmiedebergs Arch Pharmacol 1981; 317: 277–285.

    PubMed  Google Scholar 

  34. Macdonald IA, Lake DM. An improved technique for extracting catecholamines from body fluids.J Neuro Methods 1985; 13: 239–248.

    Google Scholar 

  35. Ganguly PK, Beamish RE, Dhalla KS, Innis IR, Dhalla NS. Norepinephrine storage, distribution, and release in diabetic cardiomyopathy.Am J Physiol 1987; 252: E734-E739.

    PubMed  Google Scholar 

  36. Sahai A, Ganguly PK. Observations on atrial natriuretic peptide, sympathetic activity and renal Ca2+ pump in diabetic and hypertensive rats.Clin Anton Res 1993; 3: 137–143.

    Google Scholar 

  37. Austin CE, Chess-Williams R. Transient elevation of cardiac beta-adrenoceptor responsiveness and receptor number in the streptozotocin-diabetic rat.J Anton Pharmacol 1992; 12: 205–214.

    Google Scholar 

  38. Hjemdahl P. Inter-laboratory comparison of plasma catecholamine determinations using several different assays.Acta Physiol Scand 1984, 121 Suppl 527: 43–54

    Google Scholar 

  39. Zemel MB, Sowers JR, Shehin S, Walsh MF, Levy J. Impaired calcium metabolism associated with hypertension in Zucker obese rats.Metabolism 1990; 39: 704–708.

    PubMed  Google Scholar 

  40. Blaustein MP. Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis.Ain J Physiol 1977; 232: C165-C173.

    Google Scholar 

  41. O'Donnell MP, Kasiske BL, Cleary MP, Keane WE Effects of genetic obesity on renal structure and function in the Zucker rat. II. Micropuncture studies.J Lab Clin Med 1985; 106: 605–610.

    PubMed  Google Scholar 

  42. Levin BE, Stoddard-Apter S, Sullivan AC. Central activation and peripheral function of sympatho-adrenal and cardiovascular systems in the Zucker rat.Physiol Behav 1984; 32: 295–299.

    PubMed  Google Scholar 

  43. Ionescu E, Sauter JF, Jeanrenaud B. Abnormal oral glucose tolerance in genetically obese (fa/fa) rats.Am J Physiol 1985; 248: E500-E506.

    PubMed  Google Scholar 

  44. Levin BE, Triscari J, Sullivan AC. Studies of origins of abnormal sympathetic function in obese Zucker rats.Am J Physiol 1985; 245: E87-E93.

    Google Scholar 

  45. Bö:hm M, Castelleno M, Paul M, Erdmann E. Cardiac norepinephrine, β-adrenoceptors, and Gia-proteins in prehypertensive and hypertensive spontaneously hypertensive rats.J Cardiovasc Pharm 1994; 23: 989–987.

    Google Scholar 

  46. Pijl AJ, van der Wal AC, Mathy M-J et al. Streptozotocin-induced diabetes mellitus in spontaneously hypertensive rats: a patho-physiological model for the combined effects of hypertension and diabetes.J Pharmacol Meth 1995; 32: 225–233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubois, E.A., Kam, K.L., Somsen, G.A. et al. Cardiac iodine-123 metaiodobenzylguanidine uptake in animals with diabetes mellitus and/or hypertension. Eur J Nucl Med 23, 901–908 (1996). https://doi.org/10.1007/BF01084363

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01084363

Key words

Navigation