Skip to main content

Advertisement

Log in

The effects of exercise on the bones of postmenopausal women

  • Published:
International Orthopaedics Aims and scope Submit manuscript

Summary

The effects of walking and aerobic dancing on the bones of 73 recently postmenopausal women have been compared by photon absorptiometry of the distal radius with a control group who did not exercise. The period of observation was six months. Results showed that the control group and the walking group lost statistically significant amounts of bone mineral content (1.6%, and 1.7% respectively), but that the dancing group did not (0.8%). The control group did not show a significant increase in the bone width (0.9%), but both the dancing (1.3%) and walking (1.6%) groups did. Changes in the cross-sectional moment of inertia of the radius were estimated for each subject based on bone mineral content and bone width values. Both exercise groups experienced significant increases in this variable, while the control group did not. Plasma oestrogen levels were not influenced by exercise. The results support the hypothesis that mechanical loading due to exercise may be effective in preventing postmenopausal osteoporosis.

Résumé

Les auteurs ont comparé, par photo-absorptiométrie de l'extrémité inférieure du radius, les effets de la marche et de la danse «aerobic« sur l'os de 73 femmes récemment ménopausées en les comparant à un groupe de contrôle ne pratiquant aucun exercise. L'observation a porté sur une période de six mois. Les résultats montrent que le groupe de contrôle et celui qui pratique la marche présentent une déminéralisation osseuse statistiquement significative (1,6% et 1,7% respectivement), contrairement au groupe pratiquant la danse (0,8%). Il n'y a pas d'augmentation significative de la largeur de l'os dans le groupe de contrôle (0,9%), alors qu'elle est importante aussi bien dans le groupe de danse (1,3%) que dans le groupe de marche (1,6%). On a calculé chez chaque sujet, à l'aide des mesures de la teneur en minéraux et de la largeur de l'os, le moment d'inertie d'une section horizontale du radius. Les deux groupes pratiquant un exercise présentent une augmentation significative de cette variable, tandis qu'il n'y en a pas dans le groupe de contrôle. Le taux d'oestrogène plasmatique n'est pas influencé par l'exercise. Ces résultats confirment l'hypothèse selon laquelle les contraintes mécaniques entraînées par l'exercise pourraient prévenir efficacement l'ostéoporose post-ménopausique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mazess RB, Cameron JR (1973) Bone mineral content in normal U.S. whites. In: International Conference on Bone Mineral Measurement, pp 228–238. Chicago, Illinois: U.S. Department HEW

    Google Scholar 

  2. Moore WT, Shapiro JR, Jorgensen H, Reid J, Epps CH, Whedon GD (1975) The evaluation of bone density findings in normal populations and osteoporosis. Transactions of the Am Clin Climatol Assoc, 86: 128–138

    Google Scholar 

  3. Karjalainen P, Alhava EM (1977) Bone mineral content of the forearm in a healthy population. Acta Radiol Therapy Phys Biology 16: 199–208

    Google Scholar 

  4. Cohn SH, Vaswani A, Zanzi I, Ellis KJ (1976) Effect of aging on bone mass in adult women. Am J Physiol 230: 143–148

    Google Scholar 

  5. Aloia JF, Cohn SH, Babu T, Abesamis C, Kalici N, Ellis K (1978) Skeletal mass and body composition in marathon runners. Metabolism 27: 1793–1796

    Google Scholar 

  6. Dalen N, Olsen KE (1974) Bone mineral content and physical activity. Acta Orthop Scand 45: 170–174

    Google Scholar 

  7. Nilsson BE, Westlin NE (1971) Bone density in athletes. Clin Orthop 77: 179–182

    Google Scholar 

  8. Nilsson BE, Anderson SM, Hadrup T (1978) Ballet dancing and weight lifting-effects on bone mineral content. Am J Roentgenol 131: 541

    Google Scholar 

  9. Aloia JF, Cohn SH, Ostuni JA, Cane R, Ellis K (1977) Prevention of involutional bone loss by physical exercise. Calc Tiss Res Suppl 24: R1

  10. Smith EL, Jr, Babcock SW (1973) Effects of physical activity on bone loss in the aged. Med Sci Sports Exec 5: 68

    Google Scholar 

  11. Smith EL, Jr, Reddan W (1976) Physical activity — a modality for bone accretion in the aged. Am J Roentgenol. 126: 1297

    Google Scholar 

  12. Smith EL, Jr, Reddan W, Smith PE (1981) Physical activity and calcium modalities for bone mineral increase in aged women. Med Sci Sports Exerc 13: 60–64

    Google Scholar 

  13. Smith DM, Khairi MRA, Norton J, Johnston CC (1976) Age and activity effects on rate of bone mineral loss. J Clin Invest 58: 716–721

    Google Scholar 

  14. Sorensen J (1979) Aerobic Dancing. New York, Rawson, Wade Publishers, Inc.

    Google Scholar 

  15. Cameron JR, Sorenson J (1963) Measurement of bone mineral in vivo: an improved method. Science 142: 230–232

    Google Scholar 

  16. Sorenson JA, Cameron JR (1967) A reliable in vivo measurement of bone mineral content. J Bone Joint Surg [Am] 49: 481–497

    Google Scholar 

  17. Goldsmith NF, Johnston JO, Ury H, Vose G, Colbert C (1971) Bone-mineral estimation in normal and osteoporotic women. J Bone Joint Surg [Am] 53: 83–100

    Google Scholar 

  18. Wilson CR (1977) Bone-mineral content of the femoral neck and spine versus the radius or ulna. J Bone Joint Surg [Am] 58: 665–669

    Google Scholar 

  19. Martin RB, Burr DB (1983) Non-invasive measurement of long bone cross-sectional moment of inertia by photon absorptiometry. J Biomech (in press)

  20. Butcher RL (1977) Changes in gonadotropins and steroids associated with unilateral ovariectomy of the rat. Endocrinology 101: 830–840

    Google Scholar 

  21. Clarke HH, Clarke DH (1978) Development al and Adapted Physical Education (2nd ed) Englewood Cliffs, N.J.: Prentice-Hall

    Google Scholar 

  22. Martin RB, Burr DB (1982) Does bone-mineral content reflect age-related changes in the mechanical properties of the distal radius? Transactions of the 28th Annual Meeting, Orthopaedic Research Society New Orleans, Jan. 19–21: 107

  23. White MK (1981) The effects of walking and aerobic dancing on the skeletal and cardiovascular systems of postmenopausal females. Doctoral dissertation, West Virginia University, Morgantown, WV

    Google Scholar 

  24. Lewis S, Haskell WL, Wood PD, Manoogian N, Bailey JE, Pereira MB (1976) Effects of physical activity on weight reduction in obese middle-aged women. Am J Clin Nutr 29: 151–156

    Google Scholar 

  25. Luria MH, Koepke KR (1975) The physical conditioning effects of walking. J Sports Medicine and Physical Fitness 15: 272–274

    Google Scholar 

  26. Pollack ML, Miller HS, Janeway R, Linnerud AC, Robertson B, Valentino R (1971) Effects of walking on body composition and cardiovascular function of middle-aged men. J Appl Physiol 30: 126–130

    Google Scholar 

  27. Khairi MRA, Johnston CC (1978) Exponential bone loss in postmenopausal women. In: International Conference on Bone Mineral Measurement, p 543. Ontario, Canada: U.S. Department HEW

    Google Scholar 

  28. Kuhlencordt F, Ringe JD, Kruse H-P, Roth AV (1973) Bone mineral determination of radius, ulna, and finger-bones by 125 I photon absorptiometry on healthy persons. In: International Conference on Bone Mineral Measurement, pp 277–281. Chicago, Illinois: U.S. Department HEW

    Google Scholar 

  29. Smith EL, Cameron JR (1972) Interpretation of fracture index charts. Norland-Cameron Bone Mineral Analyzer Applications. Note No. 1

  30. Goldsmith NF (1973) Normative data for the osteoporosis prevalence survey, Oakland, California, 1969–1970. In: International Conference on Bone Mineral Measurement, pp 239–344 Chicago, Illinois: U.S. Department HEW. 239

    Google Scholar 

  31. Smith DM, Khairi MRA, Johnston CC, Jr (1973) Mineral loss with aging measured prospectively by the photon absorption technique. In: International Conference on Bone Mineral Measurements, pp 268–276. Chicago, Illinois: U.S. Department HEW

    Google Scholar 

  32. Carlson DS, Armelagos GJ, VanGerven DP (1976) Patterns of age-related cortical bone loss (osteoporosis) within the femoral diaphysis. Human Biol 48: 295–314

    Google Scholar 

  33. Martin RB, Atkinson PJ (1977) Age and sex-related changes in the structure and strength of the human femoral shaft. J Biomech 10: 223–231

    Google Scholar 

  34. Martin RB, Picket JC, Zinaich S (1980) Studies of skeletal remodeling in aging men. Clin Orthop 149: 268–282

    Google Scholar 

  35. Smith RW, Jr, Walker RR (1964) Femoral expansion in aging women: Implications for osteoporosis and fractures. Science 145: 156–157

    Google Scholar 

  36. Burr DB, Martin RB (1983) Lower extremity loads stimulate bone formation in the vertebral column: Implications for osteoporosis. Spine (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, M.K., Martin, R.B., Yeater, R.A. et al. The effects of exercise on the bones of postmenopausal women. International Orthopaedics 7, 209–214 (1984). https://doi.org/10.1007/BF00266829

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00266829

Key words

Navigation