Skip to main content
Log in

Polarized electronic absorption spectra of synthetic (Mg, Fe)-orthopyroxenes, ferrosilite and Fe3+-bearing ferrosilite

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The assignment of spin-allowed Fe2+-bands in orthopyroxene electronic absorption spectra is revised by studying synthetic bronzite (Mg0.8 Fe0.2)2Si2O6, hypersthene (Mg0.5 Fe0.5)2Si2O6 and ferrosilite (Fe2Si2O6). Reheating of bronzite and hypersthene single crystals causes a redistribution of the Fe2+-ions over the M1 and M2 octahedra, which was determined by Mössbauer spectroscopy and correlated to the intensity change of the spin-allowed Fe2+ d-d bands in the polarized absorption spectra. The 11000 cm-1 band is caused by Fe2+ in M1 (5B2g5A1g) and Fe2+ in M2 (5A15A1), the 8500 cm-1 band by Fe2+ in M1 (5B2g5B1g) and the 5000 cm-1 band by Fe2+ in M2 octahedra (5A15B1). The Fe2+-Fe3+ charge transfer band is identified at 12500cm-1 in the spectra of synthetic Fe3+ -Al bearing ferrosilite. This band shows a strong γ-polarization and therefore is caused by Fe2+ -Fe3+-ions in edge-sharing octahedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldridge LP, Tse JS, Bancroft GM (1982) The identification of Fe2+ in the M4 site of calcic amphiboles: discussion. Am Mineral 67:335–339

    Google Scholar 

  • Amthauer G (1982) Gemischte Valenzzustände des Eisens in Mineralen. Fortschr Mineral 60:119–154

    Google Scholar 

  • Annersten H, Olesch M, Seifert FA (1978) Ferric iron in orthopyroxene: a Mössbauer spectroscopic study. Lithos 11:301–310

    Google Scholar 

  • Bakhtin AI, Manapov RA (1976) Investigation of clinopyroxenes by optical and Mössbauer spectroscopy. Geochem Int 13(2):81–88

    Google Scholar 

  • Beran A, Bittner H (1974) Untersuchungen zur Kristallchemie des Ilvaits. Tschermaks Mineral Petrogr Mitt 21:11–29

    Google Scholar 

  • Burnham CW (1963) Refinement of the structure of kyanite. Z Kristallogr 118:337–360

    Google Scholar 

  • Burns RG (1970) Mineralogical applications of crystal field theory. Cambridge University Press

  • Burns RG (1981) Intervalence transitions in mixed-valence minerals of iron and titanium. Ann Rev Earth Planet Sci 9:345–383

    Google Scholar 

  • Burns RG, Parkin KM, Loeffler BM, Abu-Eid RM, Leung IS (1976) Visible-region spectra of the moon: Progress toward characterizing the cations in Fe-Ti bearing minerals. Proc 7th Lunar Sci Conf, Suppl 7, Geochim Cosmochim Acta 3:2561–2578

    Google Scholar 

  • Cameron M, Sueno S, Prewitt CT, Papike JJ (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, Jadeite, spodumene and ureyite. Am Mineral 58:594–618

    Google Scholar 

  • Clark JR, Appleman DE, Papike JJ (1969) Crystal-chemical characterization of clinopyroxenes based on eight new structure refinements. Mineral Soc Am Spec Paper 2:31–50

    Google Scholar 

  • Ghose S (1965) Mg2+-Fe2+ order in an orthopyroxene, Mg0.93Fe1.07Si2O6. Z Kristallogr 122:81–99

    Google Scholar 

  • Goldman DS, Rossman GR (1977) The spectra of iron in orthopyroxene revisited: the splitting of the ground state. Am Mineral 62:151–157

    Google Scholar 

  • Goldman DS, Rossman GR (1979) Determination of quantitative cation distribution in orthopyroxenes from electronic absorption spectra. Phys Chem Minerals 4:43–53

    Google Scholar 

  • Hawthorne FC, Ito J (1977) Synthesis and crystalstructure refinement of transition-metal orthopyroxenes I: Orthoenstatite and (Mg, Mn, Co) orthopyroxene. Can Mineral 15:321–338

    Google Scholar 

  • Jørgensen CK (1962) Absorption spectra and chemical bonding in complexes. Pergamon Press, Oxford

    Google Scholar 

  • Langer K (1988) UV to NIR spectra of minerals obtained by microscope-spectrometry and their use in mineral thermodynamics and kinetics in: Salje E (ed) Physical properties and thermodynamics of minerals. Reidel, Dordrecht

    Google Scholar 

  • Langer K, Abu-Eid RM (1977) Measurement of the polarized absorption spectra of synthetic transition metal-bearing silicate microcrystals in the spectral range 44000–4000 cm-1. Phys Chem Minerals 1:273–299

    Google Scholar 

  • Langer K, Frentrup KR (1979) Automated microscope-absorption-spectrophotometry of rock-forming minerals in the range 40000–5000 cm-1 (250–2000 nm). J Microsc 116:311–320

    Google Scholar 

  • Loeffler BM, Burns RG, Tossell JA (1975) Metal-metal charge transfer transitions: Interpretation of visible-region spectra of the moon and lunar materials. Proc 6th Lunar Sci Conf, Suppl 6, Geochim Cosmochim Acta 3:2663–2676

    Google Scholar 

  • Mao HK, Bell PM (1971) Crystal-field spectra. Carnegie Inst Washington Yearb 1970:207–215

    Google Scholar 

  • Mattson SM, Rossman GR (1987) Identifying characteristics of charge transfer transitions in minerals. Phys Chem Minerals 14:94–99

    Google Scholar 

  • Rossman GR (1980) Pyroxene spectroscopy. In: Reviews in Mineralogy 7:93–116

    Google Scholar 

  • Runciman WA, Sengupta D, Marshall M (1973) The polarized spectra of iron in silicates. I. Enstatite. Am Mineral 58:444–450

    Google Scholar 

  • Seifert FA (1983) Mössbauer line broadening in aluminous orthopyroxenes: Evidence for next nearest neighbours interactions and short-range order. Neues Jahrb Mineral Abh 148:141–162

    Google Scholar 

  • Smith G, Strens RGJ (1976) Intervalence-transfer absorption in some silicate, oxide and phosphate minerals in: The physics and chemistry of minerals and rocks Strens RGJ (ed) Wiley and Sons, New York

    Google Scholar 

  • Springer G (1967) Die Berechnung von Korrekturen für die quantitative Elektronenstrahl-Mikroanalyse. Fortschr Mineral 45:103–124

    Google Scholar 

  • Steffen G (1984) Polarisierte Einkristallspektren von synthetischen und natürlichen übergangsmetallionenführenden Pyroxenen. Thesis University of Kiel

  • Steffen G, Seifert F, Langer K (1984) Fe2+-Fe3+-Ladungsübertragungsbanden in den optischen Absorptionsspektren der Orthopyroxene. Fortschr Mineral 62: l:235–237

    Google Scholar 

  • Sueno S, Cameron M, Prewitt CT (1976) Orthoferrosilite: High-temperature crystal chemistry. Am Mineral 61:38–53

    Google Scholar 

  • Sweatman TR, Long JVP (1969) Quantitative electronprobe microanalysis of rock-forming minerals. J Petrol 10:332–379

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steffen, G., Langer, K. & Seifert, F. Polarized electronic absorption spectra of synthetic (Mg, Fe)-orthopyroxenes, ferrosilite and Fe3+-bearing ferrosilite. Phys Chem Minerals 16, 120–129 (1988). https://doi.org/10.1007/BF00203195

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00203195

Keywords

Navigation