Skip to main content
Log in

Magnetic properties of sheet silicates; 1:1 layer minerals

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Three iron-rich 1:1 clay minerals, greenalite [Si2]{Fe 2+3 }O5(OH)4, berthiérine [Si, Al]2{Fe2, Mg, Fe3+, Al}3 O5(OH)4 and cronstedtite [Si, Fe3+]2{Fe2+, Fe3+}3O5(OH)4 have been studied by Mössbauer spectroscopy, magnetization measurements and neutron diffraction to determine their magneticproperties. The predominant magnetic coupling is ferromagnetic for pairs of ferrous ions in the octahedral sheet, but antiferromagnetic for ferric pairs. The crystal field at Fe2+ sites in greenalite and berthiérine is effectively trigonal with an orbital singlet l z=0 as ground state. These mainly ferrous minerals order magnetically at 17K and 9K respectively. The magnetic structure of greenalite consists of ferromagnetic octahedral sheets, with the moments lying in the plane, coupled antiferromagnetically by much weaker interplane interactions. The ratio of intraplane to interplane coupling is of order 50, so the silicate has a two-dimensional aspect, both structurally and magnetically. Although the overall magnetic order is established as antiferromagnetic by neutron diffraction, the magnetization curves resemble those of a ferromagnet because of the very weak interplane coupling. Cronstedtite orders antiferromagnetically around 10K. Moments within the planes are antiferromagnetically coupled. The magnetism has no particular two-dimensional character because exchange paths between the layers are provided by the ferric cations present in the tetrahedral sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacon GE (1975) Neutron diffraction, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Bailey SW (1980) Structures of layer silicates. In: Brindley GW, Brown G (eds) Crystal structures of clay mineral and their X-ray identification. London, Mineralogical Society, pp 1–124

    Google Scholar 

  • Ballet O (1979) Fe2+ dans les silicates lamellaires. Etude magnétique et Mössbauer. Thèse de troisième cycle, Grenoble

    Google Scholar 

  • Borg RJ, Lai DYF, Borg IY (1973) Use of magnetic hyperfine splitting to determine Fe2+/Fe3+ ratios in complex silicate minerals. Nature (London), Phys Sci 246:46–48

    Google Scholar 

  • Borg RJ, Borg IY (1974) Magnetic order in certain alkali amphiboles, a Mössbauer investigation. J Phys (Paris) 35:C6 553–556

    Google Scholar 

  • Borg RJ, Borg IY (1980) Mössbauer study of behaviour of oriented single crystals of riebeckite at low temperatures and their magnetic properties. Phys Chem Minerals 5:219–234

    Google Scholar 

  • Burns R (1970) Mineralogical applications of crystal field theory. Cambridge University Press, Cambridge

    Google Scholar 

  • Coey JMD (1980) Clay minerals and their transformations studied with nuclear techniques: The contribution of Mössbauer spectroscopy. At Energy Rev 18:73–124

    Google Scholar 

  • Coey JMD, Ballet O (1978) La greenalite: Argile métamagnétique. CR Acad Sci (Paris) 286:355–357

    Google Scholar 

  • Goodenough JB (1963) Magnetism and the chemical bond. Interscience, New York

    Google Scholar 

  • Herpin A (1968) Théorie du magnétisme. Presses Universitaires de France, Paris

    Google Scholar 

  • Jacobs IS (1963) Metamagnetism of siderite (FeCO3). J Appl Phys 34:1106–1107

    Google Scholar 

  • Kan XM, Zhang EL, Li YR (1980) Zeeman splitting in Mössbauer spectra of laihunite at low temperature. Kexue Tongbao 25:858–861

    Google Scholar 

  • Kundig W, Cape JA, Lindquist RH, Constabaris G (1967) Some magnetic properties of Fe2SiO4 from 4°K to 300°K. J Appl Phys 38:947–948

    Google Scholar 

  • Landa ER, Gast RG (1973) Evaluation of crystallinity in hydrated ferric oxides. Clays Clay Miner 21:121–130

    Google Scholar 

  • Mermin ND, Wagner H (1966) Absence of ferromagnetism or antiferromagnetism in one or two-dimensional isotropic Heisenberg models. Phys Rev Lett 17:1133–1137

    Google Scholar 

  • Miyamoto H, Shinjo T, Bando Y, Takada T (1967) Mössbauer effect of 57Fe in Fe(OH)2. J Phys Soc Japan 23:1421; Bull Inst Chem Res Kyoto Univ 45:333–341

    Google Scholar 

  • Miyamoto H (1976) The magnetic properties of Fe(OH)2. Mater Res Bull 11:329–336

    Google Scholar 

  • Morrish AH (1965) The physical principles of magnetism. Wiley, New York

    Google Scholar 

  • Regnard JR (1976) Mössbauer study of natural crystals of staurolite. J Phys (Paris) 37:C6 797–780

    Google Scholar 

  • Varret F, Hartmann-Boutron F (1968) Effects du couplage spin-orbite sur les propriétés des composés magnétiques ioniques du groupe du fer. Ann Phys 3:57–174

    Google Scholar 

  • Varret F (1976) Crystal-field effects on high-spin ferrous ion. J Phys (Paris) 37:C6 437–456

    Google Scholar 

  • Weber F (1973) Genesis and supergene evolution of the Precambrian sedimentary manganese deposit at Moanda (Gabon). Proceedings of the Kiev Symposion on Genesis of Precambrian Iron and Manganese Deposits 1970 (UNESCO), pp 307–324

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coey, J.M.D., Ballet, O., Moukarika, A. et al. Magnetic properties of sheet silicates; 1:1 layer minerals. Phys Chem Minerals 7, 141–148 (1981). https://doi.org/10.1007/BF00308232

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00308232

Keywords

Navigation