Skip to main content
Log in

A mathematical model of B lymphocyte differentiation: Control by antigen

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A mathematical model of B lymphocyte differentiation, based on experimental results, has been developed. The model focuses on the role of antigen in initiating and regulating B cell differentiation while other mechanisms, acting in concert with antigen but the functioning of which can be circumvented under appropriate conditions, are not considered. The importance of presence of antigen at individual stages of B cell differentiation was studied in experiments with an easily metabolizable antigen. Immunocompetent cells (ICC), arising by antigen-independent differentiation of stem cells, are activated by antigen (they become immunologically activated cells — IAC). Excess of antigen drives IAC into the terminal stage (antibody-forming cells — AFC) thereby restricting proliferation. Exhaustive terminal differentiation results in tolerance. A low primary dose permits IAC to escape antigen; IAC proliferate and later give rise to resting memory cells (MC) which are amenable to reactivation. MC have higher avidity for antigen (due to higher affinity, number and density of receptors) and the effect of different doses of antigen on MC is diverse. A very low secondary dose induces tolerance, a medium dose secondary response, and the administration of a high dose of antigen also brings about tolerance. The model suggests that the fate of memory cells is controlled by the ratio R∶Ag, of the number of immunoglobulin receptors on B cells (R) to the number of available antigenic molecules (Ag), low values of R∶Ag favouring stimulation to differentiation while high values of R∶Ag favouring inactivation. A nonlinear system of ordinary differential equations, describing the development of the populations involved in antigen driven B cell differentiation, was used to simulate experiments and good qualitative agreement was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alperin, L. B., Isavina, I. A., Lozovoy, V. P., Shergin, S. M.: Mathematical model of autoregulation of immune response (in Russian). Avtometriya 15, 75–85 (1979)

    Google Scholar 

  • Barthold, D. R., Prescott, B., Stashak, P. W., Amsbaugh, D. F., Baker, P. J.: Regulation of the antibody response to type III pneumococcal polysaccharide. III. Role of regulatory T cells in the development of an IgG and IgA antibody response. J. Immunol. 112, 1042–1050 (1974)

    Google Scholar 

  • Barton, C. F., Mohler, R. R., Hsu, C. S.: System theoretic control in immunology. In: Optimization techniques, Proc. 7th IFIP Conf. (J. Cea, ed.), Part 1, pp. 59–70. Berlin-Heidelberg-New York: Springer 1976

    Google Scholar 

  • Bell, G. I.: Mathematical model of clonal selection and antibody production. J. Theoret. Biol. 29, 191–232 (1970)

    Google Scholar 

  • Bell, G. I.: Mathematical model of clonal selection and antibody production. II. J. Theoret. Biol. 33, 339–378 (1971a)

    Google Scholar 

  • Bell, G. I.: Mathematical model of clonal selection and antibody production. III. The cellular basis of immunological paralysis. J. Theoret. Biol. 33, 379–398 (1971b)

    Google Scholar 

  • Bell, G. I., Perelson, A. S.: An historical introduction to theoretical immunology. In: Theoretical immunology (G. I. Bell, A. S. Perelson, G. H. Pimbley, eds.), pp. 3–41. New York-Basel: Dekker 1978

    Google Scholar 

  • Besedovsky, H. O., Sorkin, E.: Hormonal control of immune processes. In: Endocrinology, Vol. 2 (V. H. T. James, ed.), pp. 504–513. Amsterdam-Oxford: Excerpta Medica 1977

    Google Scholar 

  • Besedovsky, H. O., Del Rey, A., Sorkin, E., Da Prada, M., Keller, H. H.: Immunoregulation mediated by the sympathetic nervous system. Cell. Immunol. 48, 346–355 (1979)

    Google Scholar 

  • Bretscher, P. A., Cohn, M.: Minimal model for the mechanism of antibody induction and paralysis by antigen. Nature (London) 220, 444–448 (1968)

    Google Scholar 

  • Bruni, C., Giovenco, M. A., Koch, G., Strom, R.: A dynamical model of humoral immune response. Math. Biosci. 27, 191–211 (1975)

    Google Scholar 

  • Bruni, C., Giovenco, M. A., Koch, G., Strom, R.: Modelling of the immune response: A system approach. In: Theoretical immunology (G. I. Bell, A. S. Perelson, G. H. Pimbley, eds.), pp. 379–414. New York-Basel: Dekker 1978

    Google Scholar 

  • Celada, F.: Quantitative studies of the adoptive immunological memory in mice. II. Linear transmission of cellular memory. J. Exp. Med. 125, 199–211 (1967)

    Google Scholar 

  • Černý, P.: Digital simulation program SIMFOR for the solution of two-point boundary-value problems (in Czech). Research Report ÚTIA ČSAV, No. 639, Prague 1975

  • Cohen, S.: A model for the mechanism of antibody induction and tolerance, with specific attention to the affinity characteristics of antibodies produced during the immune response. J. Theoret. Biol. 27, 19–29 (1970)

    Google Scholar 

  • Comincioli, V., Nespoli, L., Periti, P. F., Serazzi, G.: A mathematical model of the “two-signal” theory for T-B cells cooperation. In: Systems theory in immunology (C. Bruni, G. Doria, G. Koch, R. Strom, eds.), pp. 175–189. Berlin-Heidelberg-New York: Springer 1979

    Google Scholar 

  • Conrad, R. E., Ingraham, J. S.: Rate of hemolytic antibody production by single cells in vivo in rabbits. J. Immunol. 112, 17–25 (1974)

    Google Scholar 

  • Cooper, M. D., Lawton, A. R., Kincade, P. W.: A two-stage model for development of antibody-producing cells. Clin. Exp. Immunol. 11, 143–149 (1972)

    Google Scholar 

  • Coutinho, A., Möller, G.: Thymus-independent B cell induction and paralysis. Adv. Immunol. 21, 113–236 (1975)

    Google Scholar 

  • DeLisi, C.: Some physical-chemical aspects of cellular selection in an immune response. In: Theoretical immunology (G. I. Bell, A. S. Perelson, G. H. Pimbley, eds.), pp. 215–242. New York-Basel: Dekker 1978

    Google Scholar 

  • Dibrov, B. F., Livshits, M. A., Volkenstein, M. V.: Mathematical model of immune processes. J. Theoret. Biol. 65, 609–631 (1977)

    Google Scholar 

  • Dresser, D. W.: Tolerance induction as a model for cell differentiation. Br. Med. Bull. 32, 147–151 (1976)

    Google Scholar 

  • Eardley, D. D., Shen, F. W., Cantor, H., Gershon, R. K.: Genetic control of immunoregulatory circuits. J. Exp. Med. 150, 44–50 (1979)

    Google Scholar 

  • Eichmann, K.: Expression and function of idiotypes on lymphocytes. Adv. Immunol. 26, 195–254 (1978)

    Google Scholar 

  • Feldmann, M., Diener, E.: Antibody-mediated suppression of the immune response in vitro. III. Low zone tolerance in vitro. Immunology 21, 387–404 (1971)

    Google Scholar 

  • Franzl, R. E.: The primary immune response in mice. III. Retention of sheep red blood cell immunogens by the spleen and liver. Infect. Immun. 6, 469–482 (1972)

    Google Scholar 

  • Grossman, Z., Asofsky, R., DeLisi, C.: The dynamics of antibody secreting cell production: Regulation of growth and oscillations in the response to T-independent antigens. J. Theoret. Biol. 84, 49–92 (1980)

    Google Scholar 

  • Herzenberg, L. A., Black, S. J., Herzenberg, L. A.: Regulatory circuits and antibody responses. Eur. J. Immunol. 10, 1–11 (1980)

    Google Scholar 

  • Hiernaux, J.: The stability of the immune network. In: Systems theory in immunology (C. Bruni, G. Doria, G. Koch, R. Strom, eds.), pp. 228–238. Berlin-Heidelberg-New York: Springer 1979

    Google Scholar 

  • Hildemann, W. H., Benedict, A. A.: Immunologic phylogeny. New York: Plenum Press 1975

    Google Scholar 

  • Hobbs, M. V., Feldbush, T. L.: Antigen modulation of the immune response. VI. Rate of large memory cell appearance in lymph nodes and thoracic duct lymph Cell. Immunol. 50, 30–40 (1980)

    Google Scholar 

  • Hoffmann, G. W.: A theory of regulation and self-nonself discrimination in an immune network. Eur. J. Immunol. 5, 638–647 (1975).

    Google Scholar 

  • Hoffmann, G. W.: Mathematical modelling of a network theory of self-regulation in the immune system. In: Proc. IEEE and SIAM Decision and Control Conf., pp. 740–745. San Diego 1979

  • Howard, J. G.: Immunological tolerance. Int. Rev. Biochem. 22, 227–262 (1979)

    Google Scholar 

  • Janeway, C., Jones, B., Binz, H., Frischknecht, H., Wigzell, H.: T-cell receptor idiotypes. Scand. J. Immunol. 12, 83–92 (1980)

    Google Scholar 

  • Jerne, N. K.: Towards a network theory of the immune system. Ann. Immunol. (Paris) 125C, 373–389 (1974)

    Google Scholar 

  • Jílek, M.: Immune response and its stochastic theory. In: Identification and system parameter estimation, Proc. 3rd IFAC Symp. (P. Eykhoff, ed.), pp. 209–212. Amsterdam-London: North Holland 1973

    Google Scholar 

  • Jílek, M., Šterzl, J.: A model of differentiation of immunologically competent cells. In: Developmental aspects of antibody formation and structure (J. Šterzl, I. Říha, eds.), pp. 963–981. Prague: Academia 1970

    Google Scholar 

  • Jílek, M., Šterzl, J.: Modelling of the immune processes. In: Morphological and functional aspects of immunity (K. Lindahl-Kiessling, G. Alm, M. G. Hanna, eds.), pp. 333–349. New York-London: Plenum Press 1971

    Google Scholar 

  • Jílek, M., Ursínyová, Z.: The probability of contact between the immunocompetent cell and antigen. Folia Microbiol. (Praha) 15, 294–302 (1970)

    Google Scholar 

  • Katz, D.H.: Adaptive differentiation of lymphocytes: Theoretical implications for mechanisms of cell-cell recognition of immune responses. Adv. Immunol. 29, 137–207 (1980)

    Google Scholar 

  • Klaus, G. G. B.: B cell tolerance induced by polymeric antigens. II. Effects of tolerance on hapten-binding lymphocyte levels in primary and secondary antibody responses: Eur. J. Immunol. 5, 366–372 (1975)

    Google Scholar 

  • Klaus, G. G. B.: B cell maturation: Its relationship to immune induction and tolerance. In: B and T cells in immune recognition (F. Loor, G. E. Roelants, eds.), pp. 235–260. Chichester-New York-Brisbane-Toronto: Wiley 1977

    Google Scholar 

  • Klaus, G. G. B., Humphrey, J. H.: B cell tolerance induced by polymeric antigens. I. Comparison of the dose and epitope density requirements for inactivation of primed and unprimed B cells in vivo. Eur. J. Immunol. 5, 361–365 (1975)

    Google Scholar 

  • Klaus, G. G. B., Howard, J. G., Feldmann, M.: Mechanisms of B-cell tolerance. Br. Med. Bull. 32, 141–146 (1976)

    Google Scholar 

  • Klein, P., Doležal, J., Šterzl, J.: Mathematical model of regulation of antibody response. In: Optimization techniques, Proc. 9th IFIP Conf. (K. Iracki, K. Malanowski, S. Walukiewicz, eds.), Part 1, pp. 535–545. Berlin-Heidelberg-New York: Springer 1980

    Google Scholar 

  • Klinman, N. R.: The mechanism of antigenic stimulation of primary and secondary precursor cells. J. Exp. Med. 136, 241–260 (1972)

    Google Scholar 

  • Klinman, N. R., Press, J. L.: The B cell specificity repertoire: Its relationship to definable subpopulations. Transplant. Rev. 24, 41–83 (1975)

    Google Scholar 

  • Marchuk, G. I.: Some mathematical models in immunology. In: Optimization techniques, Proc. 8th IFIP Conf. (J. Stoer, ed.), Part 1, pp. 41–62. Berlin-Heidelberg-New York: Springer 1978

    Google Scholar 

  • Mattioli, C. A., Tomasi, T. B.: The life span of IgA plasma cells from the mouse intestine. J. Exp. Med. 138, 452–460 (1973)

    Google Scholar 

  • Mohler, R. R., Barton, C. F.: Compartmental control model of the immune process. In: Optimization techniques, Proc. 8th IFIP Conf. (J. Stoer, ed.), Part 1, pp. 421–430. Berlin-Heidelberg-New York: Springer 1978

    Google Scholar 

  • Mohler, R. R., Hsu, C. S.: Systems compartmentation in immunological modeling. In: Systems theory in immunology (C. Bruni, G. Doria, G. Koch, R. Strom, eds.), pp. 165–174. Berlin-Heidelberg-New York: Springer 1979

    Google Scholar 

  • Mohler, R. R., Barton, C. F., Hsu, C. S.: T and B cell models in the immune system. In: Theoretical immunology (G. I. Bell, A. S. Perelson, G. H. Pimbley, eds.), pp. 415–435. New York-Basel: Dekker 1978

    Google Scholar 

  • Mohler, R. R., Bruni, C., Gandolfi, A.: A system approach to immunology. Proc. IEEE 68, 964–990 (1980)

    Google Scholar 

  • Möller, G. (ed.): Concepts of B lymphocyte activation. Transplant. Rev. 23 (1975)

  • Möller, G. (ed.): Mechanisms of B lymphocyte tolerance. Immunol. Rev. 43 (1979)

  • Nakashima, I., Nagase, F., Yokochi, T., Ohta, M., Kato, N.: Adjuvant actions of polyclonal lymphocyte activators. I. Comparison and characterization of their actions in antibody response to deaggregated bovine serum albumin. Cell. Immunol. 46, 69–76 (1979)

    Google Scholar 

  • Nossal, G. J. V., Schrader, J. W.: B lymphocyte-antigen interactions in the initiation of tolerance or immunity. Transplant. Rev. 23, 138–158 (1975)

    Google Scholar 

  • Perelson, A. S.: The IgM-IgG switch looked at from a control theoretic viewpoint. In: Optimization techniques, Proc. 8th IFIP Conf. (J. Stoer, ed.), Part 1, pp. 431–440. Berlin-Heidelberg-New York: Springer 1978

    Google Scholar 

  • Perelson, A., DeLisi, C.: Receptor clustering on a cell surface. I. Theory of receptor cross-linking by ligands bearing two chemically identical functional groups. J. Theoret. Biol. 48, 71–110 (1980)

    Google Scholar 

  • Persson, U., Hammarström, L., Möller, E., Möller, G., Smith, C. I. E.: The role of adherent cells in B and T lymphocyte activation. Immunol. Rev. 40, 78–101 (1978)

    Google Scholar 

  • Playfair, J. H. L., Purves, E. C.: Antibody formation by bone marrow cells in irradiated mice. I. Thymus-dependent and thymus-independent responses to sheep erythrocytes. Immunology 21, 113–121 (1971)

    Google Scholar 

  • Rabellino, E., Colon, S., Grey, H. M., Unanue, E. R.: Immunoglobulins on the surface of lymphocytes. I. Distribution and quantitation. J. Exp. Med. 133, 156–167 (1971)

    Google Scholar 

  • Richter, P. H.: A network theory of the immune system. Eur. J. Immunol. 5, 350–354 (1975)

    Google Scholar 

  • Richter, P. H.: The network idea and the immune response. In: Theoretical immunology (G. I. Bell, A. S. Perelson, G. H. Pimbley, eds.), pp. 539–569. New York-Basel: Dekker 1978

    Google Scholar 

  • Schimpl, A., Wecker, E.: A third signal in B cell activation given by TRF. Transplant. Rev. 23, 176–188 (1975)

    Google Scholar 

  • Sercarz, E. E., Herzenberg, L. A., Fox, C. F. (eds.): Immune system: Genetics and regulation. New York: Academic Press 1977

    Google Scholar 

  • Sharon, R., McMaster, P. R. B., Kask, A. M., Owens, J. D., Paul, W. E.: DNP-Lys-Ficoll: a T-independent antigen which elicits both IgM and IgG anti-DNP antibody-secreting cells. J. Immunol. 114, 1585–1589 (1975)

    Google Scholar 

  • Shortman, K., Diener, E., Russell, P., Armstrong, W. D.: The role of nonlymphoid accessory cells in the immune response to different antigens. J. Exp. Med. 131, 461–482 (1970)

    Google Scholar 

  • Šterzl, J.: Immunological tolerance as the result of terminal differentiation of immunologically competent cells. Nature (London) 209, 416–417 (1966)

    Google Scholar 

  • Šterzl, J.: Induction of low-zone tolerance in germfree sensitized animals. Ann. Immunol. Hung. 45, 409–414 (1972)

    Google Scholar 

  • Šterzl, J.: Regulatory intervention during differentiation and proliferation of activated B cells. Allergol. Immunopathol. Suppl. 4, 7–20 (1977)

    Google Scholar 

  • Šterzl, J., Nordin, A.: The common cell precursor for cells producing different immunoglobulins. In: Cell interactions and receptor antibodies in immune responses (O. Mäkelä, A. Cross, T. U. Kosunen, eds.), pp. 213–230. London-New York: Academic Press 1971

    Google Scholar 

  • Šterzl, J., Říha, I. (eds.): Developmental aspects of antibody formation and structure. Prague: Academia 1970

    Google Scholar 

  • Šterzl, J., Šíma, P., Medlín, J., Tlaskalová, H., Mandel, L., Nordin, A. A.: Induction of the primary response, preparation of the secondary response, and tolerance. In: Developmental aspects of antibody formation and structure (J. Šterzl, I. Říha, eds.), pp. 865–889. Prague: Academia 1970

    Google Scholar 

  • Strober, S.: Initiation of antibody responses by different classes of lymphocytes. V. Fundamental changes in physiological characteristics of virgin thymus-independent (“B”) lymphocytes and “B” memory cells. J. Exp. Med. 136, 851–857 (1972)

    Google Scholar 

  • Strober, S.: Immune function cell surface characteristics and maturation of B cell subpopulations. Transplant. Rev. 24, 84–112 (1975)

    Google Scholar 

  • Tannenberg, W. J. K., Malaviya, A. N.: The life cycle of antibody-forming cells. I. The generation time of 19S hemolytic plaque-forming cells during the primary and secondary responses. J. Exp. Med. 128, 895–921 (1968)

    Google Scholar 

  • Watson, J., Trenkner, E., Cohn, M.: The use of bacterial lipopolysaccharides to show that two signals are required for the induction of antibody synthesis. J. Exp. Med. 138, 699–714 (1973)

    Google Scholar 

  • Williamson, A. R., Zitron, I. M., McMichael, A. J.: Clones of B lymphocytes: Their natural selection and expansion. Fed. Proc. 35, 2195–2201 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, P., Šterzl, J. & Doležal, J. A mathematical model of B lymphocyte differentiation: Control by antigen. J. Math. Biology 13, 67–86 (1981). https://doi.org/10.1007/BF00276866

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276866

Key words

Navigation