Skip to main content
Log in

The response of the hovering hawk moth Macroglossum stellatarum to translatory pattern motion

  • Original Papers
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

  1. 1.

    The European hawk moth Macroglossum stellatarum, while collecting nectar in hovering flight in front of flowers, follows moving stripe patterns in the lateral visual field. This response counteracts a second one, that is the animals' effort to stabilize their distance from dummy flowers. We investigated the response to motion stimuli in the lateral visual field using sinusoidally oscillating stripe patterns (Fig. 1), as well as its interaction with the distance stabilizing response.

  2. 2.

    In both responses moths attempt to compensate for image speed. The balance between the two depends on the number of elementary motion detectors stimulated by the dummy flower and the stripe pattern, respectively. Increasing the diameter of the dummy flower (Figs. 2 to 4) or the spatial frequency of the stripe pattern (Fig. 7) shifts the balance in favour of distance stabilization. The reverse is true when the length of the stripes in the pattern (Fig. 5) or their number is increased (Fig. 6). It does not matter whether the stripe pattern is presented in the lateral (Fig. 4A) or in the dorsal and ventral visual field (Fig. 4B).

  3. 3.

    The gain-frequency relations of the response to the lateral stripe pattern obtained with dummies in two different positions within the drum have their maxima around 3 Hz and decline rapidly towards lower and higher frequencies like the response of a bandpass filter. The distance stabilizing response also has bandpass properties, but with a broad plateau between 0.15 and 5 Hz (Fig. 8). The most likely explanation for this difference is that there is a regional or direction-dependent variation of motion detector properties.

  4. 4.

    The responses to ramp-like stimuli are phasic in accordance with the amplitude frequency characteristics, but the responses to progressive (front to back) and regressive motion of the pattern differ (Figs 9, 10).

  5. 5.

    The response appears to depend on the azimuthal position of the stripe pattern within the visual field (Fig. 11). It is strongest when the pattern covers equally large parts of the frontal and caudal visual fields. The optomotor sensitivity to translational pattern motion is higher in the frontal than in the caudal visual field (Fig. 12, Table 1).

  6. 6.

    When the stripe pattern on one side is removed, the response amplitude is halved. There is no detectable turning response around the vertical axis to the oscillation of the stripe pattern (Fig. 13, Table 2).

  7. 7.

    The possible role of the response to pattern movements parallel to the longitudinal body axis under natural conditions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCR :

drift compensating response

DSR :

distance stabilizing response

EMD :

elementary motion detector

References

  • Bartsch K, Warrant EJ (1994) The nonspherical superposition eye of Macroglossum stellatarum (Lepidoptera, sphingidae). In: Elsner N, Breer H (eds) Göttingen Neurobiology Report 1994. Thieme, Stuttgart New York

    Google Scholar 

  • Burchner E (1984) Behavioural analysis of spatial vision in insects. In: Ali MA (ed) Photoreception and vision in insects. Plenum Press, New York London, pp 561–621

    Google Scholar 

  • Collett TS (1980a) Some operating rules for the optomotor system of a hoverfly during voluntary flight. J Comp Physiol 138: 271–282

    Google Scholar 

  • Collett TS (1980b) Angular tracking and the optomotor response. An analysis of visual reflex interaction in a hoverfly. J Comp Physiol 140: 145–158

    Google Scholar 

  • Collett TS, Land MF (1975) Visual control of flight behviour in the hoverfly, Syritta pipiens L. J Comp Physiol 99: 1–66

    Google Scholar 

  • Egelhaaf M (1987) Dynamic properties of two control systems underlying visually guided truning in house-flies. J Comp Physiol A 161: 777–783

    Google Scholar 

  • Egelhaaf M, Borst A (1993) Movement detection in Arthropods. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam London New York, 53–77

    Google Scholar 

  • Farina WM, Varjú D (1993) The response of the hawk moth Macroglossum stellatrum to translatory movements of stripe pattern. In: Elsner N, Heisenberg M (eds) Gene-Brain-Behaviour. Thieme, Stuttgart New York, p 370

    Google Scholar 

  • Farina WM, Varjú D, Zhou Y (1994) The regulation of distance to dummy flowers duirng hovering flight in hawk moth Macroglossum stellatarum. J Comp Physiol A 174: 239–247

    Google Scholar 

  • Götz KG (1975) The optomotor equilibrium of the Drosophila navigation system. J Comp Physiol 99: 187–215

    Google Scholar 

  • Holst E von, Mittelstaedt H (1950) Das Reafferenzprinzip (Wechselwirkung zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37: 564–476

    Google Scholar 

  • Junger W, Dahmen HU (1991) Response to self-motion in waterstriders: visual discrimination between rotation and translation. J Comp Physiol A 169: 641–666

    Google Scholar 

  • Junger W, Varjú D (1990) Drift compensation and its sensory basis in waterstriders (Gerris paludum F.). J Comp Physiol A 167: 441–456

    Google Scholar 

  • Kelber A (1993) Visuelle Orientierung im Fluge: Die schwebenden Wächterinnen der stachellosen Biene Tetragonisca angustula (Meliponinae, Hymenoptera). Dissertation Universität Tübingen

  • Kelber A, Zeil J (1990) A robust procedure for visual stabilisation of hovering flight position in guard bees (Trigona (Tetragonisca angustula, Meloponinae). J Comp Physiol A 167: 569–577

    Google Scholar 

  • Kern R (1993) The response of the hawk moth Macroglossum stellatarum L. to translatory, rotatory, and combined visual stimulation. In: Elsner N, Heisenberg M (eds) Gener-Brain-Behaviour. Thieme, Stuttgart New York, p 367

    Google Scholar 

  • Kern R, Varjú D (1994) Flow-field analysis by means of eye region specialisation: Free-flight experiments in the hawk moth Macroglossum. In: Elsner N, Breer H (eds) Göttingen Neurobiology Report 1994. Tieme, Stuttgart New York, p 435

    Google Scholar 

  • Koenderink JJ, Doom AJ van (1987) Facts on optic flow. Biol. Cybern 56: 247–254

    Google Scholar 

  • Kramer D, Varjú D (1991) Velocity compensation in the hawk moth Macroglossum to vertical stripe patterns moving parallel to the longitudinal body axis. Verh Dtsch Zool Ges 84, p 351

    Google Scholar 

  • Land MF (1992) Visual tracking and pursiut: humans and arthropods compared. J Insect Physiol 38: 939–951

    Google Scholar 

  • Land MF, Collett TS (1974) Chasing behaviour of houseflies (Fannia canicularis). A description and analysis. J Comp Physiol 89: 331–357

    Google Scholar 

  • Lazzari C, Varjú D (1990) Visual lateral fixation in the haematophagous bug Triatoma infestans. J Comp Physiol A 167: 527–531

    Google Scholar 

  • Paul H, Nalbach HO, Varjú D (1990) Eye movements in the rock crab Pachygrapsus marmoratus walking along straight and curved paths. J Exp Biol 154: 81–97

    Google Scholar 

  • Pfaff M, Varjú D (1991) Machanisms of visual distance perception in the hawk moth Macroglossum stellatarum. Zool Jb Physiol 95: 315–321

    Google Scholar 

  • Preiss R (1991) Separation of translation and roatation by means of eye-region specialization. J Insect Behav 4: 209–219

    Google Scholar 

  • Reichardt W (1973) Musterinduzierte Flugorientierung. Verhaltensversuche an der Fliege Musca domestica. Naturwissenschaften 60: 122–138

    Google Scholar 

  • Reichardt W, Varjú D (1959) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen (Folgerungen aus Experimenten an dem Rüsselkäfer Chlorophanus viridis). Z Naturforsch 14b: 674–689

    Google Scholar 

  • Srinivasan MV, Lehrer M, Kirchner W, Zhang SW (1991) Range perception through apparent image speed in freely-flying honeybees. Visual Neurosci 6: 519–535

    Google Scholar 

  • Varjú D (1959) Optomotorische Reaktionen auf die Bewegung periodischer Helligkeistmuster. Z Naturforsch 14b: 724–735

    Google Scholar 

  • Varjú D (1973) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen. In: Lueken B, Scharf JH (eds) Neue Ergebnisse zur Informationsaufnahme und Informationsverarbeitung in Sinnesorganen. Nova Acta Leopoldina, Neue Folge, 37/2: 173–193

    Google Scholar 

  • Varjú D (1975) Stationary and dynamic responses during visual edge fixation by a walking insect. Nature 255: 330–332

    Google Scholar 

  • Varjú D (1977) Systemtheorie für Biologen und Mediziner. Springer, Berlin Heidelberg New York, pp 134–138

    Google Scholar 

  • Varjú D (1987) The interaction between visual edge fixation and skototaxis in the mealworm beetle Tenebrio molitor. J Comp Physiol A 160: 543–552

    Google Scholar 

  • Varjú D (1990) A note on the reafference principle. Biol. Cybern 63: 315–323

    Google Scholar 

  • Wehner R (1981) Spatial vision in Arthropods. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates (Handbook of sensory physiology, vol IIV/6C). Springer, Berlin Heidelberg New York, pp 187–218

    Google Scholar 

  • Wehrhahn Ch (1985) Visual guidance of flies during flight In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharamology, Vol 6. Pergamon Press, Oxford New York Toronto Sydney Paris Frankfurt, 673–687

    Google Scholar 

  • Wehrhahn Ch, Hausen K (1980) How is tracking and fixation accomplished in the nervous system of the fly? Biol Cybern 38: 179–186

    Google Scholar 

  • Wicklein M (1994) Neuroanatomie der optischen Ganglien und Electrophysiologie bewegungssensitiver interneurone in der Lobula Platte von Macroglossum stellatarum. Dissertation Universität Tübingen

  • Zanker J, Collett TS (1985) The optomotor system on the ground: on the absence of visual control of speed in walking ladybirds. J Comp Physiol A156: 395–402

    Google Scholar 

  • Zeil J (1983) Sexual dimorphism in the visual system of flies: The free flight behaviour of male Bibionidae (Diptera). J Comp Physiol 150: 395–412

    Google Scholar 

  • Zeil J (1986) The territorial flight of male houseflies (Fannia canicularis L. ). Behav Ecol Sociobiol 19: 213–219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farina, W.M., Kramer, D. & Varjú, D. The response of the hovering hawk moth Macroglossum stellatarum to translatory pattern motion. J Comp Physiol A 176, 551–562 (1995). https://doi.org/10.1007/BF00196420

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00196420

Key words

Navigation