Skip to main content
Log in

Response to electricity in Volvox and the nature of galvanic stimulation

  • Published:
Zeitschrift für vergleichende Physiologie Aims and scope Submit manuscript

Summary

  1. 1.

    Volvox orients fairly precisely in a constant galvanic current.

  2. 2.

    It is positive to the cathode whenever it is photopositive and positive to the anode whenever it is photonegative. Anything which causes reversal in the direction of orientation in light causes reversal in the direction of orientation in a galvanic current, e. g. light, temperature, chemicals, hydrogen-ion concentration.

  3. 3.

    Galvanic orientation is due to cessation or diminution in the activity of the flagella on the side of the colony toward which it turns. Photic orientation is brought about largely, if not entirely, by change in the direction of the stroke of the flagella due to change in the amount of light received by the photosensitive tissue in the eyes, owing to rotation on the longitudinal axis.

  4. 4.

    When the circuit is closed the activity of the flagella in colonies which are not rotating, diminishes or ceases on the surface facing the pole toward which the colonies are positive, but the decreased activity continues only a few seconds after which the activity increases to that which obtained before the circuit was closed. If the circuit is now opened a similar response is obtained on the opposite side.

  5. 5.

    If the colonies are positive to the cathode the flagella on the cathode side respond after the circuit is closed and those on the anode side after it is opened. If they are positive to the anode the reverse obtains.

  6. 6.

    The galvanic response in the individual zooids in Volvox is only momentary. But in colonies which are swimming freely and rotating on the longitudinal axis the galvanic response on the side toward which they turn is continuous, owing to the continuous transfer of zooids to this side, from the opposite side, i. e. from the side where they are not affected by the current to the side where they are affected.

  7. 7.

    Reversal in the direction of galvanic orientation is probably accompanied by a change in the electric charge of the colonies. Colonies which are positive to the cathode usually drift cataphoretically toward the anode, indicating a negative charge; and those which are positive to the anode usually drift toward the cathode, indicating a positive charge. This has, however, not been unequivocally established.

  8. 8.

    A galvanic current induces in the lower organisms various chemical and physical changes at the anode and at the cathode surfaces but the changes induced at these two surfaces differ greatly. In some the changes at the surface toward the cathode are followed by certain conspicuous phenomena, e. g. reversal in the direction of the stroke of the cilia in Paramecium; in others those at the surface toward the anode are followed by equally conspicuous but different phenomena, e. g. contraction in Amoeba and bioluminescence in ctenophores; and in still others those on one side are followed by the same conspicuous phenomena if the organisms are in a given state, as those on the other side, if the organisms are in different state, e. g. decrease in the effectiveness of the stroke of the flagella in Volvox.

  9. 9.

    The reversal in galvanic response observed in Volvox is not in accord with Pflüger's law. Whether or not the responses observed on the anode side in amoeba and ctenophores also violate this law, depends upon its interpretation.

  10. 10.

    Galvanic stimulation in Volvox is probably associated with decrease in surface polarization and decrease in water-content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  • Bancroft, F. W., 1906: The control of galvanotropism in Paramecium by chemical substances. Univ. of California publ. in physiol. 3, 21–31.

    Google Scholar 

  • Ders., 1906: On the influence of the relative concentration of calcium ions on the reversal of the polar effects of the galvanic current in Paramecium. Journ. of physiol. 34, 444–463.

    Google Scholar 

  • Ders., 1907: The mechanism of the galvanotropic orientation in Volvox. Journ. of exp. zool. 4, 157–163.

    Google Scholar 

  • Bernstein, Julius, 1902: Untersuchungen zur Thermodynamik der bioelektrischen Ströme. Arch. f. d. ges. Physiol. 92, 521.

    Google Scholar 

  • Ders., 1912: Elektrobiologie. Braunschweig. 215 S.

  • Bethe, A., 1916: Capillarchemische (capillarelektrische) Vorgänge als Grundlage einer allgemeinen Erregungstheorie. Arch. f. d. ges. Physiol. 163, 147–178.

    Google Scholar 

  • Beutner, R., 1920: Die Entstehung elektrischer Ströme in lebenden Geweben. Stuttgart. 157 S.

  • Bose, J. C., 1907: Comparative electro-physiology. New York. 760 S.

  • Carlgren, O., 1899: Über die Einwirkung des konstanten galvanischen Stromes auf niedere Organismen. Arch. f. Anat. u. Physiol., Abt. 46–76.

  • Cochn, A. and Barratt, W., 1905: Über Galvanotaxis vom Standpunkte der physikalischen Chemie. Zeitschr. f. allg. Physiol. 5, 1–9.

    Google Scholar 

  • Greeley, A. W., 1904: Experiments on the physical structure of the protoplasm of Paramecium and its relation to the reactions of the organism to thermal, chemical and electrical stimuli. Biol. Bull. of the marine biol laborat. 7, 3–32.

    Google Scholar 

  • Hill, A. V., 1910: A new mathematical treatment of changes of ionic concentration in muscle and nerve under the action of electric currents, with a theory as to their mode of excitation. Journ. of physiol. 40, 190–224.

    Google Scholar 

  • Jennings, H. S., 1906: Behavior of the lower organisms. Columbia Univ. Press. 366 S.

  • Keller, R., 1925: Die Elektrizität in der Zelle. Mährisch-Ostrau. 320 S.

  • Koehler, Otto, 1925: Galvanotaxis. Handb. d. Norm. u. Pathol. Physiol. 11, 1027–1049.

    Google Scholar 

  • Kühne, W., 1864: Untersuchungen über das Protoplasma. Leipzig. 59–64.

  • Lillie, R. S., 1923: Protoplasmic Action and Nervous Action. Chicago. 417 S.

  • Loeb, J. und Budgett, S. P.: 1897: Zur Theorie des Galvanotropismus. IV. Mitt. Über die Ausscheidung elektropositiver Ionen an der äußeren Anodenfläche protoplasmatischer Gebilde als Ursache der Abweichungen vom Pflügerschen Erregungsgesetz. Arch. f. d. ges. Physiol. 66, 518–534.

    Google Scholar 

  • Lucas, K., 1910: An analysis of changes and differences in the excitatory process of muscles and nerves based on the physical theory of excitation. Journ. physiol. 40, 225–249.

    Google Scholar 

  • Ludloff, K., 1895: Untersuchungen über den Galvanotropismus. Arch. f. d. ges. Physiol. 59, 525–554.

    Google Scholar 

  • Lund, E. J. and Logan, G. A., 1925: The relation of the stability of protoplasmic films in Noctiluca to the duration and intensity of an applied electric potential. Journ. of gen. physiol. 7, 461–471.

    Google Scholar 

  • Mast, S. O., 1907: Light reactions in lower organisms. II. Volvox. Journ. of comp. neurol. and psychol. 17, 99–180.

    Google Scholar 

  • Ders., 1911: Light and the Behavior of Organisms. New York. 410 S.

  • Ders., 1918: Effects of chemicals on reversion in orientation to light in the colonial form, Spondylomorum quaternarium. Journ. of exp. zool. 26, 503–520.

    Google Scholar 

  • Ders., 1919: Reversion in the sense of orientation to light in the colonial forms, Volvox globator and Pandorina morum. Journ. of exp. zool. 27, 367–390.

    Google Scholar 

  • Ders., 1926: Reactions to light in Volvox, with special reference to the process of orientation. Zeitschr. f. vergl. Physiol. 4, 637–658.

    Google Scholar 

  • Ders. and Nadler, J. E., 1926: Reversal of ciliary action in Paramecium caudatum. Journ. of morphol a. physiol. 43, 105–117.

    Google Scholar 

  • McClendon, J. F., 1911: Ein Versuch amöboide Bewegung als Folgeerscheinung wechselnden elektrischen Polarisationszustandes der Plasmahaut zu erklären. Arch. f. d. ges. Physiol. 140, 271–280.

    Google Scholar 

  • Moore, A. R., 1926: Galvanic stimulation of luminescence in Pelagia noctiluca. Journ. of gen. physiol. 9, 375–379.

    Google Scholar 

  • Ders., 1926: On the ionic basis of electrical stimulation. Proc. of the soc. f. exp. biol. a. med. 23, 341–342.

    Google Scholar 

  • Nernst, 1899: Göttingen, mathem.-physikal. Kl. 104.

  • Ostwald, W., 1890: Elektrische Eigenschaften halbdurchlässiger Scheidewände. Zeitschr. f. physikal. Chem. 6, 71–82.

    Google Scholar 

  • Pearl, R., 1901: Studies on the effect of electricity on organisms. II. The reactions of Hydra to the constant current. Americ. journ. of physiol. 5, 301–320.

    Google Scholar 

  • Pflüger, E. F., 1859: Untersuchungen über die Physiologie des Elektrotonus. Berlin. 500 S.

  • Roux, W., 1891: Beiträge zur Entwicklungsmechanik des Embryo. Über die morphologische Polarisation von Eiern und Embryonen durch den elektrischen Strom usw. Sitzungsber. d. Akad. Wien, Mathem.-naturw. Kl. III, 101, 27–234.

    Google Scholar 

  • Statkewitsch, P., 1903: Über die Wirkung der Induktionsschläge auf einige Ciliata. Le Physiologiste Russe 3 1–55.

    Google Scholar 

  • Terry, O. P., 1906: Galvanotropism of Volvox. Americ. journ. of physiol. 15, 235–243.

    Google Scholar 

  • Verworn, M., 1896: Untersuchungen über die polare Erregung der lebendigen Substanz durch den konstanten Strom. III. Mitt. Arch. f. d, ges. Physiol. 62. 415–450.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mast, S.O. Response to electricity in Volvox and the nature of galvanic stimulation. Z. Vergl. Physiol. 5, 739–761 (1927). https://doi.org/10.1007/BF00302276

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00302276

Keywords

Navigation