Skip to main content
Log in

The steady shear viscosity of filled polymeric liquids described by a linear superposition of two relaxation mechanisms

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Filled polymeric liquids often exhibit apparent yielding and shear thinning in steady shear flow. Yielding results from non-hydrodynamic particle—particle interactions, while shear thinning results from the non-Newtonian behavior of the polymer melt. A simple equation, based on the linear superposition of two relaxation mechanisms, is proposed to describe the viscosity of filled polymer melts over a wide range of shear rates and filler volume fraction.

The viscosity is written as the sum of two generalized Newtonian liquid models. The resulting equation can describe a wide range of shear-thinning viscosity curves, and a hierarchy of equations is obtained by simplifying the general case. Some of the parameters in the equation can be related to the properties of the unfilled liquid and the solid volume fraction. One adjustable parameter, a yield stress, is necessary to describe the viscosity at low rates where non-hydrodynamic particle—particle interaction dominate. At high shear rates, where particle—particle interactions are dominated by interparticle hydrodynamics, no adjustable parameters are necessary. A single equation describes both the high and low shear rate regimes. Predictions of the equation closely fit published viscosity data of filled polymer melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

n :

power-law index

n 1,n 2 :

power-law index of first (second) term

\(\dot \gamma \) :

shear rate

η :

steady shear viscosity

η 0 :

zero-shear rate viscosity

η 0, 1,η 0, 2 :

zero-shear rate viscosity of first (second) term

λ :

time constant

λ 1,λ 2 :

time constant of first (second) term

µ r :

relative viscosity of filled Newtonian liquid

τ 0 :

yield stress

ø :

solid volume fraction

ø m :

maximum solid volume fraction

References

  1. Metzner AB (1985) Trans Soc Rheol 29:739–775

    Google Scholar 

  2. Kamal MR, Mutel A (1985) J Polym Engng 5:293–382

    Google Scholar 

  3. Glushkov IA, Vinogradov GV, Rozhkov VA (1976) Polym Mech 10:779–783

    Google Scholar 

  4. White, JL (1979) J Non-Newtonian Fluid Mech 5:177–190

    Google Scholar 

  5. Herschel WH, Bulkley R (1926) Kolloid-Z 39:291–300

    Google Scholar 

  6. Krieger IM, Dougherty TJ (1959) Trans Soc Rheol 3:137–152

    Google Scholar 

  7. Barnes HA, Walters K (1985) Rheol Acta 24:323–326

    Google Scholar 

  8. Matsumoto TC, Hitomi C, Onogi C (1975) Trans Soc Rheol 10:541–555

    Google Scholar 

  9. Matsumoto TC, Yamamoto O, Onogi S (1980) Trans Soc Rheol 24:379–394

    Google Scholar 

  10. Tsai SC, Viers B (1987) J Rheol 31:483–494

    Google Scholar 

  11. Landel RF, Moser BG, Bauman AJ (1963) Proc IV Intl Congr Rheol 3:663–692

    Google Scholar 

  12. Giesekus H (1978) ZAMM 58:T26-T37

    Google Scholar 

  13. Michele J, Pätzold R, Donis R (1977) Rheol Acta 16:317–321

    Google Scholar 

  14. Hoffman RL (1972) Trans Soc Rheol 16:155–173

    Google Scholar 

  15. Pätzold R (1980) Rheol Acta 19:322–344

    Google Scholar 

  16. Husband DM, Gadala-Maria F (1987) J Rheol 31:95–110

    Google Scholar 

  17. Gadala-Maria F, Acrivos A (1980) Trans Soc Rheol 24:799–814

    Google Scholar 

  18. Gadala-Maria FA (1979) PhD diss, Standord Univ, Stanford

  19. Minagawa N, White JL (1976) J Appl Polym Sci 20:501–520

    Google Scholar 

  20. Laun HM (1984) Angew Makromol Chem 123/124: 335–359 (2012)

    Google Scholar 

  21. Windhab E, Gleissle W (1984) Proc. IX Intl. Congr Rheol 2:557–564

    Google Scholar 

  22. Leighton DT, Acrivos A (1986) Chem Engng Sci 41:1377–1384

    Google Scholar 

  23. Carreau PJ (1968) PhD Thesis, Univ of Wisconsin, Madison

  24. Gleissle W, Baloch MK (1984) Proc. IX Intl. Congr Rheol, 2:549–556

    Google Scholar 

  25. Thomas DG (1965) J Colloid Sci 20:267–277

    Google Scholar 

  26. Rutgers IR (1962) Rheol Acta 2:305–348

    Google Scholar 

  27. Graham AL, Steele RD, Bird RB (1984) Ind Engng Chem Fund 23:420–425

    Google Scholar 

  28. Nicodemo L, Nicolais L (1974) J Appl Polym Sci 18:2809–2818

    Google Scholar 

  29. Stephens TS (1988) PhD diss, Univ Massachusetts, Amherst

  30. Nicodemo L, Nicolais L, Landel RF (1974) Chem Engng Sci 29:729–735

    Google Scholar 

  31. Bailey FE Jr., Powell GM, Smith KL (1958) Ind Engng Chem 50:8–11

    Google Scholar 

  32. Clinton N, Matlock, P (1985) Encyclopedia of Polym Sci and Engng vol 6:225–273

    Google Scholar 

  33. Winter HH, Stephens TS, Morrison FM (1985) 56th annual meeting Soc Rheol, Blacksburg, Virginia (unpublished)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephens, T.S., Winter, H.H. & Gottlieb, M. The steady shear viscosity of filled polymeric liquids described by a linear superposition of two relaxation mechanisms. Rheol Acta 27, 263–272 (1988). https://doi.org/10.1007/BF01329742

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01329742

Key words

Navigation