Skip to main content
Log in

Formation of microglia-derived brain macrophages is blocked by adriamycin

  • Regular Papers
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

Injection of ricin, the toxic lectin fromRicinus communis, into the rat facial nerve leads to rapid degeneration of motor neurons and concomitant proliferation and transformation of endogenous microglia into brain macrophages. Using [3H]-thymidine autoradiography, immunocytochemistry for microglial markers and electron microscopy, we could show that when ricin was administered together with the cytostatic drug adriamycin, the retrogradely transported adriamycin inhibits the macrophage response induced by toxic ricin. It is concluded that under conditions of neuronal degeneration, e.g., following ricin intoxication, brain macrophages are predominantly, if not exclusively, derived from endogenous microglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiyama H, Itagaki S, McGeer PL (1988) Major histocompatibility complex antigen expression on rat microglia following epidural kainic acid lesions. J Neurosci Res 20:147–157

    Google Scholar 

  2. Bigotte L, Olsson Y (1982) Retrograde transport of doxorubicin (adriamycin) in peripheral nerves of mice. Neurosci Lett 32:217–221

    Google Scholar 

  3. Bigotte L, Olsson Y (1983) Cytotoxic effects of adriamycin on mouse hypoglossal neurons following retrograde axonal transport from the tongue. Acta Neuropathol (Berl) 61: 161–168

    Google Scholar 

  4. Bigotte L, Olsson Y (1987) Degeneration of trigeminal ganglion neurons caused by retrograde axonal transport of doxorubicin. Neurology 37:985–992

    Google Scholar 

  5. Blinzinger K, Kreutzberg G (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch 85:145–157

    Google Scholar 

  6. Dijkstra CD, Döpp EA, Joling P, Kraal G (1985) The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 54:589–599

    Google Scholar 

  7. Duchen LW (1984) General pathology of neurons and neuroglia. In: Adams JH, Corsellis JAN, Duchen LW (eds) Greenfield's neuropathology, Edward Arnold, London, pp 1–52

    Google Scholar 

  8. Frei K, Siepl C, Groscurth P, Bodmer S, Schwerdel C, Fontana A (1987) Antigen presentation and tumor cytotoxicity by interferon-γ-treated microglial cells. Eur J Immunol 17:1271–1278

    Google Scholar 

  9. Gartner S, Markovits P, Markovitz DM, Kaplan MH, Gallo RC, Popovic M (1986) The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233:215–219

    Google Scholar 

  10. Giulian D (1987) Ameboid microglia as effectors of inflammation in the central nervous system. J Neurosci Res 18:155–171

    Google Scholar 

  11. Graeber MB, Kreutzberg GW (1986) Astrocytes increase in glial fibrillary acidic protein during retrograde changes of facial motor neurons. J Neurocytol 15:363–373

    Google Scholar 

  12. Graeber MB, Kreutzberg GW (1988) Delayed astrocyte reaction following facial nerve axotomy. J Neurocytol 17:209–220

    Google Scholar 

  13. Graeber MB, Streit WJ, Kreutzberg GW (1988) The microglial cytoskeleton: vimentin is localized within activated cells in situ. J Neurocytol 17:573–580

    Google Scholar 

  14. Graeber MB, Streit WJ, Kreutzberg GW (1988) Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells. J Neurosci Res 21:18–24

    Google Scholar 

  15. Graeber MB, Tetzlaff W, Streit WJ, Kreutzberg GW (1988) Microglial cells but not astrocytes undergo mitosis following rat facial nerve axotomy. Neurosci Lett 85:317–321

    Google Scholar 

  16. Graeber MB, Streit WJ, Kreutzberg GW (1989) Identity of ED2-positive perivascular cells in rat brain. J Neurosci Res 22:103–106

    Google Scholar 

  17. Hager H (1975) EM fingings on the source of reactive microglia on the mammalian brain. Acta Neuropathol (Berl) [Suppl] 6:279–283

    Google Scholar 

  18. Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239:290–292

    Google Scholar 

  19. Koenig S, Gendelman HE, Orenstein JM, Dal Canto MC, Pezeshkpour GH, Yungbluth M, Janotta F, Aksamit A, Martin MA, Fauci AS (1986) Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233:1089–1093

    Google Scholar 

  20. Konigsmark BW, Sidman RL (1963) Origin of brain macrophages in the mouse. J Neuropathol Exp Neurol 22:643–676

    Google Scholar 

  21. Kreutzberg GW (1966) Autoradiographische Untersuchung über die Beteiligung von Gliazellen an der axonalen Reaktion im Facialiskern der Ratte. Acta Neuropathol (Berl) 7:149–161

    Google Scholar 

  22. Kreutzberg GW (1968) Über perineuronale Mikrogliazellen (Autoradiographische Untersuchungen). Acta Neuropathol (Berl) [Suppl] 4:141–145

    Google Scholar 

  23. Kreutzberg GW, Barron KD (1978) 5′-Nucleotidase of microglial cells in the facial nucleus during axonal reaction. J Neurocytol 7:601–610

    Google Scholar 

  24. Lampson LA, Kushner PD, Sobel RA (1988) Strong expression of class II major histocompatibility complex (MHC) antigens in the absence of detectable T cell infiltration in amyotrophic lateral sclerosis (ALS) spinal cord. J Neuropathol Exp Neurol 47:353

    Google Scholar 

  25. McGeer PL, Itagaki S, McGeer EG (1988) Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol 76:550–557

    Google Scholar 

  26. Miyazaki R, Schelper RL (1987) Axoplasmic transport of adriamycin blocks true microglial proliferation induced hypoglossal axotomy. J Neuropathol Exp Neurol 46:350

    Google Scholar 

  27. Nissl F (1894) Über eine neue Untersuchungsmethode des Zentralorgans speziell zur Feststellung der Lokalisation der Nervenzellen. Zentralbl Nervenheilkd Psychiatr 17:337–344

    Google Scholar 

  28. Peters A, Palay SL, Webster HdeF (1976) The fine structure of the nervous system: the neurons and supporting cells. WB Saunders, Philadelphia, pp 254–263

    Google Scholar 

  29. Polman CH, Dijkstra CD, Sminia T, Koetsier JC (1986) Immunohistological analysis of macrophages in the central nervous system of Lewis rats with acute experimental allergic encephalomyelitis. J Neuroimmunol 11:215–222

    Google Scholar 

  30. Price RW, Brew B, Sidtis J, Rosenblum M, Scheck AC, Cleary P (1988) The brain in AIDS: central nervous system HIV-1 infection and AIDS dementia complex. Science 239:586–592

    Google Scholar 

  31. Reisert I, Wildemann G, Grab D, Pilgrim Ch (1984) The glial reaction in the course of axon regeneration: a stereological study of the rat hypoglossal nucleus. J Comp Neurol 229:121–128

    Google Scholar 

  32. Rieske-Shows E, Tetzlaff W, Czlonkowska A, Graeber M, Kreutzberg GW (1987) Microglia in culture. In: Althaus HH, Seifert W (eds) Glial-neuronal communication in development and regeneration, NATO ASI Series H, vol 2. Springer, Heidelberg, pp 41–51

    Google Scholar 

  33. Robinson AP, White TM, Mason DW (1986) Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRX OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunology 57: 239–247

    Google Scholar 

  34. Sminia T, De Groot CJA, Dijkstra CD, Koetsier JC, Polman CH (1987) Macrophages in the nervous system of the rat. Immunobiology 174:43–50

    Google Scholar 

  35. Streit WJ, Kreutzberg GW (1987) Lectin binding by resting and reactive microglia. J Neurocytol 16:249–260

    Google Scholar 

  36. Streit WJ, Kreutzberg GW (1988) Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. J Comp Neurol 268:248–263

    Google Scholar 

  37. Streit WJ, Graeber MB, Kreutzberg GW (1988) Functional plasticity of microglia: a review. Glia 1:301–307

    Google Scholar 

  38. Streit WJ, Graeber MB, Kreutzberg GW (1989) Peripheral nerve lesion produces increased levels of major histocompatibility complex antigens in the central nervous system. J Neuroimmunol 21:117–123

    Google Scholar 

  39. Tetzlaff W, Graeber MB, Bisby MA, Kreutzberg GW (1988) Increased glial fibrillary acidic protein synthesis in astrocytes during retrograde reaction of the rat facial nucleus. Glia 1:90–95

    Google Scholar 

  40. Unanue ER (1984) Antigen-presenting function of the macrophage. Annu Rev Immunol 2:395–428

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graeber, M.B., Streit, W.J. & Kreutzberg, G.W. Formation of microglia-derived brain macrophages is blocked by adriamycin. Acta Neuropathol 78, 348–358 (1989). https://doi.org/10.1007/BF00688171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00688171

Key words

Navigation