Skip to main content
Log in

Hemidesmosome ontogeny in digit skin of the human fetus

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Hemidesmosomes are junctional complexes involved in the attachment of epidermal basal keratinocytes to the basement membrane. To try to understand better the sequence of events in the morphogenesis of hemidesmosomes, we undertook an ultrastructural analysis of hemidesmosome formation in fetal and neonatal digit skin. Hemidesmosomes, defined as membrane-associated densities or plaques, were counted and scored for three morphological characteristics: (1) the presence of a sub-basal dense plate, (2) association with anchoring filaments within the lamina lucida and (3) contacts with intermediate filaments. No hemidesmosomes were evident at 7 weeks' gestational age. Between 9 and 15 weeks the number of hemidesmosomes increased by about fourfold (from 20.6±3.8 (SD) to 95.5±8.4 per 40 μm of basal cell plasma membrane;P<0.01). The association of hemidesmosomes with intermediate filaments and anchoring filaments also increased after 15 weeks (P<0.05). Early attachment plaques first appeared as triangular focal densities on the basal plasma membrane with the appearance of sub-basal dense plates, which later became both larger and more electron dense. By 15 weeks, an inner plaque could be distinguished from the outer plaque, which coincided with a closer association with intermediate filaments. Hemidesmosomes appeared fully developed by 15 weeks' gestation. This study illustrates the structural relationship of hemidesmosomes to both intra- and extracellular filaments, suggesting close functional interactions. The complexity of the hemidesmo-some plaque is also revealed early during development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman DG (1991) Practical statistics for medical research. Chapman and Hall, London, pp 213–215

    Google Scholar 

  • Breathnach A (1971) An atlas of the ultrastructure of human skin. J and A Churchill, London

    Google Scholar 

  • Breathnach AS, Robins J (1969) Ultrastructural features of epidermis of a 14 mm (6 weeks) human embryo. Br J Dermatol 81:504–516

    Article  PubMed  CAS  Google Scholar 

  • Briggaman RA, Wheeler CE Jr (1975) The epidermal-dermal junction. J Invest Dermatol 65:71–84

    Article  PubMed  CAS  Google Scholar 

  • Burgeson RE, Chiquet M, Deutzmann R, Ekblom P, Engel J, Kleinman H, Martin G, Meneguzzi G, Paulsson M, Sanes J, Timpl R, Tryggvason K, Yamada Y, Yurchenco PD (1994) A new nomenclature for the laminins. Matrix Biol 14:209–211

    Article  PubMed  CAS  Google Scholar 

  • Chapman S, Eady RAJ (1985) Blistering in keratinocyte cultures: a regular phenomenon associated with differentiation. Eur J Cell Biol 39:352–359

    Google Scholar 

  • Chapman SJ, Leigh IM, Tidman MJ, Eady RAJ (1990) Abnormal expression of hemidesmosome-like structures by junctional epidermolysis bullosa keratinocytes in vitro. Br J Dermatol 123:137–144

    Article  PubMed  CAS  Google Scholar 

  • Dale BA, Holbrook KA, Kimball JR, Hoff M, Sun T-T (1985) Expression of epidermal keratins and filagrin during human fetal skin development. J Cell Biol 101:1257–1269

    Article  PubMed  CAS  Google Scholar 

  • Eady RAJ (1994) The hemidesmosome: a target in auto-immune bullous diseases. Dermatology 189:38–41

    Article  PubMed  Google Scholar 

  • Fine JD, Horiguchi Y, Jester J, Couchman JR (1989) Detection and partial characterization of a midlamina lucida-hemidesmosome associated antigen (19-DEJ-1) present within human skin. J Invest Dermatol 92:825–830

    Article  PubMed  CAS  Google Scholar 

  • Fine JD, Bynum K, Byrsk M (1991) LDA-1 and 19-DEJ-1 antigens: further characterization of two novel skin basement membrane components, Clin Res 39:561 A

    Google Scholar 

  • Gipson IK, Grill SM, Spurr-Michaud SJ, Brennan SJ (1983) Hemidesmosome formation in vitro. J Cell Biol 97:849–857

    Article  PubMed  CAS  Google Scholar 

  • Hegemann L, Kempenaar J, Ponec M (1994) The involvement of protein kinase, C in proliferentiation and differentiation of human keratinocytes—an investigation using inhibitors of protein kinase C. Arch Dermatol Res 286:278–284

    Article  PubMed  CAS  Google Scholar 

  • Hertle MD, Adams JC, Watt FM (1991) Integrin expression during human epidermal development in vivo and in vitro. Development 112:193–206

    PubMed  CAS  Google Scholar 

  • Hirone T, Taniguchi S (1980) BAsal lamina formation by epidermal cells in culture. Curr Probl Dermatol 10:159–169

    PubMed  CAS  Google Scholar 

  • Holbrook KA, Hoff MS (1984) Structure of the developing human embryonic and fetal skin. Semin Dermatol3:185–202

    Google Scholar 

  • Jones JCR, Green KJ (1991) Intermediate filament-plasma membrane interactions. Curr Opin Cell Biol 3:127–132

    Article  PubMed  CAS  Google Scholar 

  • Jonkman MF, Jonk MCJM de, Heeres K, Sonnenberg A (1992) Expression of integrins α6β4 in junctional epidermolysis bullosa. J Invest Dermatol 99:489–496

    Article  PubMed  CAS  Google Scholar 

  • Karnovsky MJA (1965) Formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138a

    Google Scholar 

  • Krawczyk WS, Wilgram GF (1973) Hemidesmosome and desmosome morphogenesis during epidermal wound healing. J Ultrastruct Res 45:93–101

    Article  PubMed  CAS  Google Scholar 

  • Lane AT (1986) Human fetal skin development. Pediatr Dermatol 3:487–491

    PubMed  CAS  Google Scholar 

  • Lane AT, Helm KF, Goldsmith LA (1985) Identification of bullous pemphigoid antigen, pemphigus, laminin and anchoring fibril antigens in human fetal skin. J Invest Dermatol 84:27–30

    Article  PubMed  CAS  Google Scholar 

  • Legan PK, Collins JE, Garrod DR (1992) The molecular biology of desmosomes and hemidesmosomes: “What's in a name?” Bioessays 14:385–392

    Article  PubMed  CAS  Google Scholar 

  • Moll I, Moll R (1992) Changes of expression of intermediate filament proteins during ontogenesis of eccrine sweat glands. J Invest Dermatol 98:771–785

    Article  Google Scholar 

  • Mutasim DF, Takahashi Y, Labib RS, Anhalt GJ, Patel HP and Diaz LA (1985) A pool of bullous pemphigoid antigen is intracellular and associated with the basal cell cytoskeleton-hemidesmosome complex. J Invest Dermatol 84:47–53

    Article  PubMed  CAS  Google Scholar 

  • Niessen CM, Hogervorst F, Jaspars LH, De Melker AA, Delwel GO, Hulsman EH, Kuikman I, Sonnenberg A (1994) The α6β4 integrin is a receptor for both laminin and kalinin. Exp Cell Res 211:360–367

    Article  PubMed  CAS  Google Scholar 

  • Owaribe K, Kartenbeck J, Stumpp S, Magin T, Kreig T, Diaz LA, Franke WW (1990) The hemidesmosomal plaque 1. Characterization of a major constituent protein as a differentiation marker for certain forms of epithelia. Differentiation 45:207–220

    Article  PubMed  CAS  Google Scholar 

  • Rempen A (1991) Vaginal ultrasonography in the first trimester. II Quantitative parameters. Z Geburtshilfe Perinatol 195:163–171

    PubMed  CAS  Google Scholar 

  • Richardson KC, Jarret L, Finke EH (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol 35:313–323

    PubMed  CAS  Google Scholar 

  • Rodeck CH, Eady RAJ, Gosden CM (1980) Prenatal diagnosis of epidermolysis bullosa lethalis. Lancet I:949–952

    Article  Google Scholar 

  • Sakai LY, Keene DR, Morris NP, Burgeson RE (1986) Type VII collagen is a major structural component of anchoring fibrils. J Cell Biol 103:1577

    Article  PubMed  CAS  Google Scholar 

  • Sawamura D, Li K, Chu ML, Uitto J (1991) Human bullous pemphigoid antigen (BPAG 1) Amino acid sequence deduced from cloned cDNAs predict biologically important peptide segments and protein domains. J Biol Chem 266:17784–17790

    PubMed  CAS  Google Scholar 

  • Schofield OMV, Fine JD, Pisani A, Heagerty AHM, Ortonne JP, Eady RAJ (1990) GB3 monoclonal antibody for the diagnosis of junctional epidermolysis bullosa: results of a multicenter study. J Am Acad Dermatol 23:1078

    Article  PubMed  CAS  Google Scholar 

  • Smith LT, Sakia LY, Burgeson RE, Holbrook KA (1988) Ontogeny of structural components at the dermal epidermal junction in human embryonic and fetal skin: the appearance of anchoring fibrils and type VII collagen. J Invest Dermatol 90:480–485

    Article  PubMed  CAS  Google Scholar 

  • Sonnenberg A, Calafat J, Janssen H, Daams H, Raaij-Helmer LM van der, Falcioni R, Kennel SJ, Aplin JD, Baker J, Lorizidou M, Garrod D (1991) Integrin alpha 6/beta 4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell basement membrane adhesion. J Cell Biol 113:907–917

    Article  PubMed  CAS  Google Scholar 

  • Stepp MA, Spurr-Michaud SJ, TisdaleA, Elwell J (1990) α6β4 integrin heterodimer is a component of hemidesmosomes. Proc Natl Acad Sci USA 87:8970–8974

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Korman NJ, Shimizu H, Eady RAJ, Klaus-Kovtun V, Cehrs K, Stanley JR (1990) Production of rabbit antibodies against carboxy-terminal epitopes encoded by bullous pemphigoid cDNA. J Invest Dermatol 94:617–623

    Article  PubMed  CAS  Google Scholar 

  • Thatcher SM, Malone KL, Dave K, Zhao S (1991) Localization of the 230 kD bullous pemphigoid antigen in cultured keratino-cytes: formation of a prehemidesmosome. Exp Cell Res 194:238–247

    Article  Google Scholar 

  • Tidman MJ, Eady RAJ (1984) Ultrastructural morphometry of the normal human dermal epidermal junction: the influence of age, sex and body region on laminar and non-laminar components. J Invest Dermatol 83:448

    Article  PubMed  CAS  Google Scholar 

  • Tidman MJ, Eady RAJ (1986) Hemidesmosome heterogeneity in junctional epidermolysis bullosa revealed by morphometric analysis. J Invest Dermatol 86:51–56

    Article  PubMed  CAS  Google Scholar 

  • Trolle D (1948) Age of foetus determined from its measures. Acta Obstet Gynecol Scand 27:327–337

    Article  Google Scholar 

  • Zeng L, Daniels A, Ridelle K, Fine JD (1994) Uncein, an anchoring filament component is biochemically similar to kalinin but differs markedly in its in vitro expression by normal human keratinocyte monolyaers (abstract) J Invest Dermatol 102:535

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMillan, J.R., Eady, R.A.J. Hemidesmosome ontogeny in digit skin of the human fetus. Arch Dermatol Res 288, 91–97 (1996). https://doi.org/10.1007/BF02505050

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02505050

Key words

Navigation