Skip to main content
Log in

Melting relations of muscovite-granite to 35 kbar as a model for fusion of metamorphosed subducted oceanic sediments

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Muscovite-granite was reacted in cold-seal pressure vessels at 2 kbar and in pistoncylinder apparatus between 10 and 35 kbar, with just 0.6 weight per cent water structurally bound in 14 modal per cent muscovite, and with additional water contents varying to 50 weight per cent. Phase relationships are presented through the melting interval with excess water, and with no free water added. Selected reactions above 10 kbars have been successfully reversed. An isobar at 15 kbar shows the effect of varying water contents on the mineral phase boundaries for vapor-present and vapor-absent conditions. For the dry rock, temperatures for the solidus and liquidas (quartz-out) curves, respectively, are 10 kbar-760° C, 1160° C; 15 kbar-810° C, 1220° C; 25 kbar-880° C; 1340° C; 35 kbar-1040° C, 1460° C. The solidus curve corresponds to the melting of muscovite + quartz. With water vapor present, the solidus is considerably lower, 15 kbar-610° C, 25 kbar-665° C. Water solubility in the liquid at 15 kbar is 24±3 weight per cent. Maximum temperatures for quartz and feldspars in the vapor-absent region decrease considerably with increasing water content. Temperatures for the quartz-out curve at 15 kbars are 0.6 % H2O-1230° C; 24 % H2O-760° C. At 15 kbars for low water contents, water-undersaturated liquid coexists with quartz and feldspars through hundreds of degrees. Subducted pelagic sediments which metamorphosed to muscovitebearing quartzo-feldspathic rocks would undergo two episodes of melting, beginning at different depths: (1) the first liquid dissolves all pore fluid, and transports it away when it escapes from the crystalline host, (2) reaction of muscovite yields a second liquid, with less dissolved water. According to two published thermal models for a lithosphere slab dipping at 45°, the depths would be (a) 60 km and 92 km, or (b) 17 km and 21 km. Magmas generated by partial fusion in subducted oceanic crust are cooler than the overlying crustal layers and the mantle above the slab by as much as 200° C to 300° C. This must lead to intrusion of relatively cool magma into hot rock. Consequent heating of the magma increases its prospects of reaching high levels in the upper mantle or crust before it solidifies by crossing the solidus curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J. C., Modreski, P. J., Haygood, C., Boettcher, A. L.: The role of water in the mantle of the earth: The stability of amphiboles and micas. Proc. 24th Int. Geol. Congr. 2, 231–240 (1972)

    Google Scholar 

  • Armstrong, R. L.: A model for the evolution of strontium and lead isotope in a dynamic earth. Rev. Geophys. 6, 175–199 (1968)

    Google Scholar 

  • Armstrong, R. L.: Isotopic and chemical constraints on models of magma genesis in volcanic arcs. Earth Planet. Sci. Lett. 12, 137–144 (1971)

    Google Scholar 

  • Armstrong, R. L., Cooper, J. A.: Lead isotopes in island arcs. Bull. Volcanol. 35, 27–63 (1971)

    Google Scholar 

  • Boettcher, A. L.: Volcanism and orogenic belts—the origin of andesites. In: P. J. Wyllie ed., Experimental petrology and global tectonics. Tectonophysics 17, 223–240 (1973)

  • Boettcher, A. L., Wyllie, P. J.: Melting of granite with excess water to 30 kilobars pressures. J. Geol. 76, 235–244 (1968a)

    Google Scholar 

  • Boettcher, A. C., Wyllie, P. J.: Jadeite stability measured in the presence of silicate liquids in the system NaAlSiO4-SiO2-H2O. Geochim. Cosmochim. Acta 32, 999–1012 (1968b)

    Google Scholar 

  • Brown, G. C.: Evolution of granite magmas at destructive plate margins. Nature 241, 26–28 (1973)

    Google Scholar 

  • Brown, G. C., Fyfe, W. S.: The production of granitic melts during ultrametamorpism. Contr. Mineral. and Petrol. 28, 310–318 (1970)

    Google Scholar 

  • Burnham, C. W.: Hydrothermal fluids at the magmatic stage. In: H. L. Barnes, ed., Geochemistry of hydrothermal ore deposits, p. 34–76. New York: Holt, Rinehart & Winston. Inc. 1967

    Google Scholar 

  • Church, S. E.: Limits of sediments involvement in the genesis of orogenic volcanic rocks. Contr. Mineral. and Petrol. 39, 19–32 (1973)

    Google Scholar 

  • Church, S. E., Tilton, G. R.: Lead and strontium isotopic studies in the Cascade mountains: Bearing on andesite genesis. Bull. Geol. Soc. Am. 84, 431–454 (1973)

    Google Scholar 

  • Dickinson, W. R.: Relation of andesites, granite, and derivative sandstones to arc-trench tectonics. Rev. Geophys. Space Phys. 8, 813–860 (1970)

    Google Scholar 

  • Doe, B. R.: Lead isotopes, 137 pp. Berlin-Heidelberg-New York: Springer

  • Donnelley, T. W., Rogers, J. J. W., Pushkar, P., Armstrong, R. L.: Chemival evolution of the igneous rocks of the Eastern West Indies: An investigation of thorium, uranium, and potassium distributions, and lead and strontium isotopic ratios. Mem. Geol. Soc. Am. 130, 181–224 (1971)

    Google Scholar 

  • Eggler, D. H.: Water-saturated and undersaturated melting relations in a Paricutin andesite and an estimate of water content in the natural magma. Contr. Mineral, and Petrol. 34, 261–271 (1972)

    Google Scholar 

  • Faure, G., Powell, J. L.: Strontium isotope geology 188 pp. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Fitton, J. G.: The generation of magma in island arcs. Earth Planet. Sci. Lett. 11, 63–67 (1971)

    Google Scholar 

  • Fyfe, W. S.: The generation of batholiths. In: P. J. Wyllie ed., Experimental petrology and new global tectonics. Teetonophysics 17, 273–283 (1973)

    Google Scholar 

  • Garrells, R. M., Mackenzie, F. T.: Evolution of sedimentary rocks. New York: Norton Co. Inc., 1971

    Google Scholar 

  • Gill, J. B.: Geochemistry of Viti Levu, Fiji and its evolution as an island arc. Contr. Mineral. and Petrol. 27, 179–203 1970

    Google Scholar 

  • Gilluly, J.: Plate tectonics and magmatic evolution. Bull. Geol. Soc. Am. 82, 2383–2396 (1971)

    Google Scholar 

  • Green, D. H.: Magmatic activity as the major process in the chemical evolution of the earth's crust and mantle. Tectonophysics 13, 47–71 (1972)

    Google Scholar 

  • Green, D. H.: Contrasted melting relations in a pyrolite upper mantle under mid-oceanic ridge, stable crust and island arc environments. In: P. J. Wyllie, ed., Experimental petrology and global tectonics. Tectonophysics 17, 285–297 (1973)

  • Green, T. H.: Crystallization of calc-alkaline andesite under controlled high-pressure hydrous conditions. Contr. Mineral. and Petrol. 34, 150–166 (1972)

    Google Scholar 

  • Green, T. H., Ringwood, A. E.: Genesis of the calc-alkaline igneous rock suite. Contr. Mineral. and Petrol. 18, 105–162 (1968)

    Google Scholar 

  • Hamilton, W.: Mesozoic California and under flow of Pacific mantle. Bull. Geol. Soc. Am. 80, 2409–2430 (1969)

    Google Scholar 

  • Holloway, J. R., Burnham, C. W.: Melting relations of basalt with equilibrium water pressure less than total pressure. J. Petr. 13, 1–29 (1972)

    Google Scholar 

  • Huang, W. L., Wyllie, P. J.: Melting of muscovite to 30 kbars in the system KAlSi3O8-Al2O3-SiO2-H2O (Abstract). Trans. Am. Geophys. Union 53, (4), 552 (1972)

    Google Scholar 

  • Huang, W. L., Wyllie, P. J.: Melting relations of muscovite-granite, with application to anatexis in the crust and subduction zones (Abstract). Trans. Am. Geophys. Union 54, (4) 481 (1973a)

    Google Scholar 

  • Huang, W. L., Wyllie, P. J.: Muscovite dehydration and melting in deep crust and subducted oceanic sediments. Earth Planet. Sci. Lett. 18, 133–136 (1973b)

    Google Scholar 

  • Jahns, R. H., Burnham, C. W.: Experimental studiea of pegmatite genesis: I. A model for the derivation and crystallization of granitic pegmatites. Econ. Geol. 64, 843–864 (1069)

    Google Scholar 

  • Jakeš, P., Gill, J. B.: Rare earth elements and the island arc tholeiitic series, Earth Planet. Sci. Lett. 9, 17–28 (1970)

    Google Scholar 

  • Jakeš, P., White, A. J. R.: K/Rb ratios of rocks from island arcs. Geochim. Cosmochim. Acta 34, 849–856 (1970)

    Google Scholar 

  • Jakeš, P., White, A. J. R.: Major and trace elements abundance in volcanic rocks of orogenic arcs. Bull. Geol. Soc. Am. 83, 29–40 (1972)

    Google Scholar 

  • Kitahara, S., Kennedy, G. C.: The quartz-coesite transition. J. Geophys. Res. 69, 5395–5400 (1964)

    Google Scholar 

  • Kushiro, I.: Origin of some magmas in oceanic and circum-oceanic regions. In: P. J. Wyllie ed., Experimental petrology and global tectonics. Tectonophysics 17, 211–222 (1973)

  • Lambert, I. B., Wyllie, P. J.: Stability of hornblende and a model for the low velocity zone. Nature 219, 1240–1241 (1968)

    Google Scholar 

  • Lambert, I. B., Wyllie, P. J.: Melting of gabbro (quartz eclogite) with excess water to 35 kilobars, with geological applications. I. Geol. 80, 693–708 (1972)

    Google Scholar 

  • Luth, W. C., Jahns, R. H., Tuttle, O. F.: The granite system at pressure of 4 to 10 kilobars. J. Geophys. Res. 69, 759–773 (1964)

    Google Scholar 

  • Matsumoto, I. A.: A hypothesis on the origin of the late mesozoic volcanic-plutonic association in East Asia. Pacific Geol. 1, 77 (1968)

    Google Scholar 

  • Merrill, R. B., Robertson, J. K., Wyllie, P. J.: Melting reactions in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O to 20 kilobars compared with results for other feldspar-quartz-H2O and rock-H2O systems. J. Geol. 78, 558–569 (1970)

    Google Scholar 

  • Modresky, P. J., Boettcher, A. L.: The stability of phlogopite and enstatite at high pressures: A model for mica in the interior of the earth. Am. J. Sci. 272, 852–869 (1972)

    Google Scholar 

  • Modreski, P. J., Boettcher, A. L.: Phase relationships of phlogopite in the system K2O-MgO-CaO-Al2O3-SiO2-H2O to 35 kilobars: A better model for micas in the interior of the earth. Am. J. Sci. 273, 385–414 (1973)

    Google Scholar 

  • Newton, R.C., Goldsmith, J. R.: “Hydrothermal” reactions with traces of H2O at high pressures. Trans. Am. Geophys. Union 54 (4, 482 (1973)

    Google Scholar 

  • Oversby, V. M.: Lead isotopic compositions of Tonga-Kermadec volcanics and their petrogenetic significance. Contr. Mineral. and Petrol. 37, 181–210 (1972)

    Google Scholar 

  • Oxburgh, E. R., Turcotte, D. L.: Thermal structure of island arcs. Bull. Geol. Soc. Am. 81, 1665–1688 (1970)

    Google Scholar 

  • Piwinskii, A. J.: The attainment of equilibrium in hydrothermal experiments with “granitic rocks”. Earth Planet. Sci. Lett. 2, 161–162 (1967)

    Google Scholar 

  • Piwinskii, A. J., Martin, R. F.: An experimental study of equilibrium with granitic rocks at 10 kb. Contr. Mineral. and Petrol. 29, 1–10 (1970)

    Google Scholar 

  • Robertson, J. K., Wyllie, P. J.: Rock-water systems, with special reference to the water-deficient region. Am. J. Sci. 271, 252–277 (1971a)

    Google Scholar 

  • Robertson, J. K., Wyllie, P. J.: Experimental studies on rocks from the Deboulllie Stock, Northern Maine, including melting relations in the water-deficient environment. J. Geol. 79, 549–571 (1971b)

    Google Scholar 

  • Seki, T., Kennedy, G. C.: The breakdown of potassium feldspar, KAlSi3O8, at high temperatures and high pressures. Am. Mineralogist 49, 1688–1708 (1964)

    Google Scholar 

  • Stern, C. R., Wyllie, P. J.: Melting relations of oceanic sediments and basalt-andesite-rhyolite-H2O compared at 30 kb (Abstract). Trans. Am. Geophys. Union 54, (4) 481 (1973a)

    Google Scholar 

  • Stern, C. R., Wyllie, P. J.: Water-saturated and undersaturated melting relations of a granite to 35 kilobars. Earth Planet. Sci. Lett. 18, 163–167 (1973b)

    Google Scholar 

  • Tatsumoto, M.: Lead isotopes in volcanic rocks and possible ocean-floor thrusting beneath island arcs. Earth Planet. Sci. Lett. 6, 369–376 (1969)

    Google Scholar 

  • Taylor, H. P.: The oxygen isotope geochemistry of igneous rocks. Contr. Mineral. and Petrol. 19, 1–71 (1968)

    Google Scholar 

  • Taylor, S. R.: Trace element chemistry of andesites and associated calc-alkaline rocks. Proceedings of the Andesite Conference, Bull. 65, State of Oregon, Dept. of Geol. and Mineral. Industries, 43–64 (1969)

  • Taylor, S. R., Capp, A. C., Graham, A. L., Blake, D. H.: Trace element abundances in andesites. Contr. Mineral, and Petrol. 23, 1–26 (1969)

    Google Scholar 

  • Taylor, S. R., Kaye, M., White, A. J. R., Duncan, A. R., Ewart, A.: Genetic significance of Co, Cr, Ni, Sc and V content of andesites. Geochim. Cosmochim Acta 33, 275–286 (1969)

    Google Scholar 

  • Toksöz, M. N., Minear, J. W., Julian, B. R.: Temperature field and geophysical effects of a downgoing slab. J. Geophys. Res. 76, 1113–1138 (1971)

    Google Scholar 

  • Whitney, J. A.: History of granodioritic and related magma systems: An experimental study. Unpublished Ph. D. Dissertation, Stanford university, 192 p. (1972)

  • Wyllie, P. J.: The dynamic earth: A textbook in geosciences, 416 pp. New York: John Wiley, 1971

    Google Scholar 

  • Wyllie, P. J.: Experimental petrology and global tectonics—A preview. In: P. J. Wyllie ed., Experimental petrology and global tectonics. Tectonophysics 17, 189–209 (1973)

  • Yoder, H. S., Kushiro, I.: Melting of a hydrous phase: phlogopite. Am. J. Sci. 267A, 558–582 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W.L., Wyllie, P.J. Melting relations of muscovite-granite to 35 kbar as a model for fusion of metamorphosed subducted oceanic sediments. Contr. Mineral. and Petrol. 42, 1–14 (1973). https://doi.org/10.1007/BF00521643

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00521643

Keywords

Navigation