Skip to main content
Log in

Chromosome ‘painting’ in plants — a feasible technique?

  • Chromosoma Focus
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

It is shown that chromosome painting is as yet not possible for plants with very complex genomes, neither intra- nor interspecific. The reasons are inefficient blocking of dispersed repetitive sequences and insufficient signal intensity of short unique sequences. Future perspective are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Breneman JW, Ramsey MJ, Lee DA, Eveleth GG, Minkler JL, Tucker JD (1993) The development of chromosome-specific composite DNA probes for the mouse and their application to chromosome painting. Chromosoma 102: 591–598

    Google Scholar 

  • Cremer T, Lichter P, Borden J, Ward DC, Manuelidis L (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum Genet 80: 235–246

    Google Scholar 

  • Dennis ES, Gerlach WL, Peacock WJ (1980) Identical polypyrimidine-polypurine satellite DNAs in wheat and barley. Heredity 44: 349–366

    Google Scholar 

  • Fuchs J, Schubert I (1995) Localization of seed protein genes on metaphase chromosomes of Vicia faba via fluorescent in situ hybridization. Chromosome Res 3: 94–100

    Google Scholar 

  • Fuchs J, Pich U, Meister A, Schubert I (1994) Differentiation of field bean heterochromatin by in situ hybridization with a repeated Fokl sequence. Chromosome Res 2: 25–28

    Google Scholar 

  • Fuchs J, Brandes A, Schubert I (1995) Telomere sequence localization and karyotype evolution in higher plants. Plant Syst Evol 196: 227–241

    Google Scholar 

  • Gerlach WL, Peacock WJ (1980) Chromosomal locations of highly repeated DNA sequences in wheat. Heredity 44: 269–276

    Google Scholar 

  • Hoebee B, de Stoppelaar JM, Suijkerbuijk RF, Monard S (1994) Isolation of rat chromosome-specific paint probes by bivariate flow sorting followed by degenerate oligonucleotide primed-PCR. Cytogenet Cell Genet 66: 277–282

    Google Scholar 

  • Houben A, Brandes A, Schubert I (1994) The distribution of cDNA sequences on field bean chromosomes. Genome 37: 1065–1067

    Google Scholar 

  • Jauch A, Wienberg J, Stanyon R, Arnold N, Tofanelli S, Ishida T, Cremer T (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci USA 89: 8611–8615

    Google Scholar 

  • Jiang J, Gill BS (1994) Non-isotopic in situ hybridization and plant genome mapping: the first 10 years. Genome 37: 717–725

    Google Scholar 

  • Johnson DH (1990) Molecular cloning of DNA from specific chromosomal regions by microdissection and sequence-independent amplification of DNA. Genomics 6: 243–251

    Google Scholar 

  • Kohne DE, Levison SA, Byers MJ (1977) Room temperature method for increasing the rate of DNA reassociation by many thousandfold. The phenol emulsion reassociation technique. Biochemistry 16: 5329–5341

    Google Scholar 

  • Langer PR, Waldrop AA, Ward DC (1981) Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci USA 78: 6633–6637

    Google Scholar 

  • Langford CF, Telenius H, Carter NP, Miller NGA, Tucker EM (1992) Chromosome painting using chromosome-specific probes from flow-sorted pig chromosomes. Cytogenet Cell Genet 61: 221–223

    Google Scholar 

  • Lengauer C, Luedecke H-J, Wienberg J, Cremer T, Horsthemke B (1991) Comparative chromosome band mapping in primates by in situ suppression hybridization of band specific DNA microlibraries. Hum Evol 6: 67–71

    Google Scholar 

  • Lichter P, Cremer T, Borden J, Manuelidis L Ward DC (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80: 224–234

    Google Scholar 

  • Lucretti S, Doležel J, Schubert I, Fuchs J (1993) Flow karyotyping and sorting of Vicia faba chromosomes. Theor Appl Genet 85: 665–672

    Google Scholar 

  • Macas J, Doležel J, Lucretti S, Pich U, Meister A, Fuchs J, Schubert I (1993) Localisation of seed protein genes on flow-sorted field bean chromosomes. Chromosome Res 1: 107–115

    Google Scholar 

  • Marthe F, Künzel G (1994) Localization of translocation breakpoints in somatic metaphase chromosomes of barley. Theor Appl Genet 89: 240–248

    Google Scholar 

  • Miyashita K, Vooijs MA, Tucker JD, Lee DA, Gray JW, Pallavicini MG (1994) A mouse chromosome 11 library generated from sorted chromosomes using linker-adapter polymerase chain reaction. Cytogenet Cell Genet 66: 54–57

    Google Scholar 

  • Pich U, Houben A, Fuchs J, Meister A, Schubert I (1994) Utility of DNA amplified by degenerate oligonucleotide-primed PCR (DOP-PCR) from the total genome and defined chromosomal regions of field beans. Mol Gen Genet 243: 173–177

    Google Scholar 

  • Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray J (1988) Fluorescence in situ hybridization with human chromosome-specific libraries: Detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci USA 85: 9138–9142

    Google Scholar 

  • Rosenberg C, Blakemore KJ, Kearns WG, Giraldez RA, Escallon CS, Pearson PL, Stetten G (1992) Analysis of reciprocal translocations by chromosome painting: applications and limitations of the technique. Am J Hum Genet 50: 700–705

    Google Scholar 

  • Scherthan H, Cremer T, Arnason U, Weier H-U, Lima-de-Faria A, Frönicke L (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals. Nature Genet 6: 342–347

    Google Scholar 

  • Schubert I, Doležel J, Houben A, Scherthan H, Wanner G (1993) Refined examination of plant metaphase chromosome structure at different levels made feasible by new isolation methods. Chromosoma, 102: 96–101

    Google Scholar 

  • Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64: 315–324

    Google Scholar 

  • VanDevanter DR, Choongkrittaworn NM, Dyer KA, Aten J, Otto P, Behler C, Bryant EM, Rabinovitch PS (1994) Pure chromosome-specific PCR libraries from single sorted chromosomes. Proc Natl Acad Sci USA 91: 5858–5862

    Google Scholar 

  • Vega JM, Abbo S, Feldman M, Levy AA (1994) Chromosome painting in plants: In situ hybridization with a DNA probe from a specific microdissected chromosome arm of common wheat. Proc Natl Acad Sci USA 91: 12041–12045

    Google Scholar 

  • Weier H-UG, Polikoff D, Fawcett JJ, Greulich KM, Lee K-H, Cram S, Chapman VM, Gray JW (1994) Generation of five high-complexity painting probe libraries from flow-sorted mouse chromosomes. Genomics 21: 641–644

    Google Scholar 

  • Wienberg J, Jauch A, Stanyon R, Cremer T (1990) Molecular cytotaxonomy of primates by chromosomal in situ suppression hybridization. Genomics 8: 347–350

    Google Scholar 

  • Wienberg J, Stanyon R, Jauch A, Cremer T (1992) Homologies in human and Macaca fuscata chromosomes revealed by in situ hybridization with human chromosome specific DNA libraries. Chromosoma 101: 265–270

    Google Scholar 

  • Woo S-S, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 22: 4922–4931

    Google Scholar 

  • Yerle M, Schmitz A, Milan D, Chaput B, Monteagudo L, Vaiman M, Frelat G, Gellin J (1993) Accurate characterization of porcine bivariate flow karyotype by PCR and fluorescence in situ hybridization. Genomics 16: 97–103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, J., Houben, A., Brandes, A. et al. Chromosome ‘painting’ in plants — a feasible technique?. Chromosoma 104, 315–320 (1996). https://doi.org/10.1007/BF00337219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00337219

Keywords

Navigation