Skip to main content
Log in

Chromosome diminution and evolution of polyploid species in triticum

  • Published:
Chromosoma Aims and scope Submit manuscript

Summary

  1. 1.

    The length of the chromosome complements of T. monococcum, Ae. speltoides var. ligustica and Ae. squarrosa, the donors of the A, B and D genomes respectively of T. aestivum, varied in the ratio 1.0 ∶ 1.24 ∶ 0.76. The proportion of the total lengths of the chromosomes belonging to the A, B and D genomes in the bread wheat variety Chinese Spring, as calculated from the data of Sears (1954), also falls into a similar ratio (1.0 ∶ 1.28 ∶ 0.84).

  2. 2.

    T. monococcum, T. dicoccum and T. aestivum differed in the proportion 1.0 ∶ 1.5 ∶ 2.0 as regards chromosome length and not as 1.0 ∶ 2.24 ∶

  3. 3.

    0 as would be expected from the additive value of the total chromosome length of the concerned genome donors.

  4. 3.

    The DNA content of individual nuclei in the species studied varied in proportion to chromosome length, thus indicating that the DNA content per unit length of chromosome is constant in the material studied.

  5. 4.

    The type of karyotype asymmetry in the different Triticum and Aegilops species was classified according to the scheme of Stebbins (1958). The diploid species had the most symmetrical and the hexaploids, the most asymmetrical karyotype. No prominent heterochromatic segment could be detected in any of the species.

  6. 5.

    The data indicate that a considerable degree of elimination of chromosomal material has taken place in tetraploid and hexaploid wheats subsequent to their origin. It is suggested that this might have been an important factor in the conversion of tetraploid and hexaploid wheats into functional diploids. A combination of the multivalent gene suppressor system and chromosome elimination appears to have led to a synthesis of the advantageous features of auto- and allo-polyploidy in tetraploid and hexaploid wheats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Bell, G. D. H., and L. Sachs: Investigations in the Triticinae II. J. Agric. Sci. 43, 105–115 (1953).

    Article  Google Scholar 

  • Bhaduri, P. N., and P. N. Ghosh: Chromosome squashes in cereals. Stain Technol. 29, 269–276 (1954); - Sat-chromosome of Triticum mocha — a unique feature among Triticum species. Cytologia (Tokyo) 20 (2), 148–149 (1955).

    Article  CAS  PubMed  Google Scholar 

  • —, and A. T. Natarajan: The Punjab wheat C-591 — a chromosomal mutation. Indian J. Genet. and Pl. Breed. 16, 85–87 (1956).

    Google Scholar 

  • Bhaskaran, S., and M. S. Swaminathan: Polyploidy and the genesis of the leguminous root nodule. Nucleus 1, 75–88 (1958); - Metaphase chromosome length and DNA content in relation to polyploidy in Triticum species. Exp. Cell. Res. 20, 598–599 (1960).

    Google Scholar 

  • Kihara, H.: Die Entdeckung des DD-Analysators beim Weizen. Agric. Hort. Japan 19, 889–890 (1944).

    Google Scholar 

  • —, and F. A. Lilienfeld: Genomanalyse bei Triticum und Aegilops. Untersuchungen an Aegilops X Triticum und Aegilops x Aegilops-Bastarden. Cytologia (Tokyo) 3, 384–456 (1932).

    Article  Google Scholar 

  • Kostoff, D.: Heterochromatin at the distal ends of the chromosome of Triticum monococcum. Nature (Lond.) 141, 690–691 (1938).

    Article  Google Scholar 

  • Marshak, A., and M. Bradley: X-ray inhibition of mitosis in relation to chromosome number. Proc. nat. Acad. Sci. (Wash.) 30, 231–237 (1944).

    Article  CAS  Google Scholar 

  • McFadden, E. S., and E. R. Sears: The origin of Triticum spelta and its free threshing hexaploid relatives. J. Hered. 37, 81–89 (1946).

    PubMed  Google Scholar 

  • Mirsky, A. E., and H. Ris: The composition and structure of isolated chromosomes. J. gen. Physiol. 34, 475–492 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natarajan, A. T., S. M. Sikka and M. S. Swaminathan: Polyploidy, radiosensitivity and mutation frequency in wheats. Proc. Int. Conf. Peaceful Uses of Atomic Energy 27, 321–331 (1958).

    Google Scholar 

  • Navashin, M.: „Amphiplastie“ — eine neue karyologische Erscheinung. Z. indukt. Abstamm.- u. Vererb.-Lehre Suppl. 2, 1148–1152 (1928).

    Google Scholar 

  • Okamoto, M.: Further information on identification of the chromosomes in the A and B genomes. Wheat Inf. Service 6, 3–4 (1957).

    Google Scholar 

  • Ornstein, L.: Distributional error in microspectrophotometry. Lab. Invest. 1, 250–265 (1952).

    CAS  PubMed  Google Scholar 

  • Patau, K.: Absorption microphotometry of irregular shaped objects. Chromosoma (Berl.) 5, 341–362 (1952).

    Article  CAS  Google Scholar 

  • Riley, R., and V. Chapman: Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature (Lond.) 182, 713–715 (1958).

    Article  Google Scholar 

  • —, J. Unrau and V. Chapman: Evidence on the origin of the B genome of wheat. J. Hered. 49, 90–98 (1958).

    Google Scholar 

  • Sarkar, P., and G. L. Stebbins: Morphological evidence concerning the origin of the B genome in wheat. Amer. J. Bot. 43, 297–304 (1956).

    Article  Google Scholar 

  • Schrader, S. H., and F. Schrader: Polyteny as a factor in the chromosomal evolution of the Pentatomini (Hemiptera). Chromosoma (Berl.) 8, 135–151 (1956).

    Article  Google Scholar 

  • Sears, E. R.: Chromosome pairing and fertility in hybrids and amphidiploids in the Triticinae. Res. Bull. Missouri Agric. Exp. Sta. 337, 1–20 (1941).

    Google Scholar 

  • —: Homoeologous chromosomes in Triticum aestivum. Genetics 37, 624 (1952).

    Google Scholar 

  • —: The aneuploids of common wheat. Mo. Agric. Exp. Sta. Res. Bull. 572, 1–58 (1954); - The aneuploids of common wheat. Proc. First Int. Wheat Genet. Symp., 221–229 (1958).

    Google Scholar 

  • —, and M. Okamoto: Intergenomic chromosome relationships in hexaploid wheat. Proc. Tenth Int. Cong. Genet. 2, 258–259 (1958).

    Google Scholar 

  • Stebbins, G. L.: Variation and Evolution in Plants. Columbia Univ. Press 1950. 643 pp.; - Longevity, habitat and release of genetic variability in the higher plants. Cold Spr. Harb. Symp. quant. Biol. 23, 365–378 (1958).

  • Swaminathan, M. S., and A. T. Natarajan: Polyploidy and radiosensitivity. Nature (Lond.) 179, 479–480 (1957).

    Article  Google Scholar 

  • Tjio, J. H., and A. Levan: The use of oxyquinoline in chromosome analysis. Ann. Est. Exp. De Aula Dei 2, 21–64 (1950).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pai, R.A., Upadhya, M.D., Bhaskaran, S. et al. Chromosome diminution and evolution of polyploid species in triticum. Chromosoma 12, 398–409 (1961). https://doi.org/10.1007/BF00328933

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00328933

Keywords

Navigation