Skip to main content
Log in

Die Veränderungen des Zellbesatzes der Netzhaut beim Diabetiker

Changed retinal cell content in diabetics

  • Published:
Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie Aims and scope Submit manuscript

Abstract

A quantitative exploration of retinal cell content was carried out in diabetics and metabolically healthy controls of the same age and sex distribution. After diabetes of 6 years duration there was a drastic diminution of cells in the ganglion cell layer of the central retinal area, while the number of cells of the inner nuclear layer was slightly reduced and that of the outer nuclear layer was still unchanged. The periphery of short duration diabetic retinae showed a normal cell content in all nuclear layers. In long-term diabetes (about 10 years), significant diminutions in cell numbers were found in all layers of both the retinal center and periphery. The described cell deficits are accounted for by disturbances of retinal microcirculation. After a relatively short duration of diabetes, blood flow interruptions in the area supplied by the central retinal artery occur; in long-term diabetics the chorioidal vessels are also affected. Connexions between the cell-deficit pattern and functional (electrophysiological) findings are discussed.

Zusammenfassung

Quantitative Untersuchungen des Zellbesatzes der Netzhaut von Diabetikern und Stoffwechselgesunden gleicher Alters- und Geschlechtsverteilung werden vorgelegt.

Bereits bei einer Diabetesdauer bis zu 6 Jahren finden sich im zentralen Netzhautbereich drastische Verminderungen der Zellzahlen in der Ganglienzellschicht. Zu diesem Zeitpunkt sind die Zellzahlen in der inneren Körnerschicht der zentralen Retina gering und in der äußeren Körnerschicht gar nicht vermindert. Die periphere Netzhaut von Diabetikern mit kurzer Krankheitsdauer weist einen unveränderten Zellbesatz aller Schichten auf.

Bei längerer Diabetesdauer (über 10 Jahre) finden sich signifikante Verminderungen der Zellzahlen in allen Schichten sowohl zentral als auch peripher.

Die beobachteten Zellausfälle werden auf Störungen der retinalen Mikrozirkulation zurückgeführt. Bei relativ geringer Diabetesdauer sind Störungen im Bereich der A. centralis retinae bekannt, bei Langzeitdiabetes wird auch die Choriocapillaris betroffen.

Es werden Zusammenhänge zwischen dem Muster der Zellausfälle und den funktionellen (elektroretinographischen) Befunden diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Alm A, Bill A (1972) The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with labelled microspheres including flow determinations in brain and some other tissues. Acta physiol Scand 84:306–319

    Google Scholar 

  • Alm A, Bill A (1973) Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 15:15–29

    Google Scholar 

  • Babel J, Stangos N, Korol S, Spiritus M (1977) Ocular electrophysiology. Georg Thieme Publ Stuttgart

    Google Scholar 

  • Bill A (1975) Ocular circulation. In: Moses RA (ed) Adlers Physiology of the eye. The CV Mosby Co, Saint Louis, Miss pp 210–231

    Google Scholar 

  • Bloodworth JMB Jr (1962) Diabetic retinopathy. Diabetes 11:1–22

    Google Scholar 

  • Bloodworth JMB Jr (1968) Diabetes mellitus. In: Bloodworth JMB Jr (ed) Endocrine Pathology. Williams & Wilkins, Baltimore pp 330–429

    Google Scholar 

  • Collier RH (1967) Experimental embolie ischemia of the chorioid. Arch Ophthalmol 77:683–692

    Google Scholar 

  • Dick E, Miller RF (1978) Light-evoked potassium activity in mudpuppy retina: its relationship to the b-wave of the electroretinogram. Brain Res 154:388–394

    Google Scholar 

  • Dodt E (1978) Clinical evaluation of rod and cone function: Electroretinography and visually evoked cortical potentials. Internat Ophthalmol Clinics 18:81–104

    Google Scholar 

  • Dollery CT, Henkind P, Paterson JW, Ramalho PS, Hill DW (1966) Focal retinal ischemia. I. Ophthalmoscopie and circulatory changes in focal retinal ischemia. Br J Ophthalmol 50:283

    Google Scholar 

  • Dollery CT, Bullpitt CJ, Kohner EM (1969) Oxygen supply to the retina from the retinal and chorioideal circulations at normal and increased arterial oxygen tensions. Invest Ophthalmol 8:588–594

    Google Scholar 

  • Drujan JE, Svaetichin G (1972) Characterization of different classes of isolated retinal cells. Vision Res 12:1777–1784

    Google Scholar 

  • Faber D (1969) Analysis of the slow transretinal potentials in response to light. Ph D dissertation, State University of New York at Buffalo

  • Fujimoto M, Tomita T (im Druck 1980) Field potentials induced by injection of potassium ions into the frog retina: a test of current interpretations of the electroretinographic (ERG) b-wave. Brain Res

  • Gay AJ, Goldor H, Smith M (1964) Chorioretinal vascular occlusions with latex spheres. Invest Ophthalmol 3:647

    Google Scholar 

  • Hanitzsch R, Trifonow JuA (1968) Intraretinal abgeleitete ERG-Komponenten der isolierten Kaninchennetzhaut. Vision Res 8:1445–1455

    Google Scholar 

  • Jaffe MJ, Pautler EL, Russ PN (1975) The effect of light on the respiration of retinas of several vertebrate and invertebrate species with special emphasis on the effects of acetylcholine and gamma-amino-butyric acid on the frog retina. Exp Eye Res 20:531–540

    Google Scholar 

  • Janert H, Mohnike G, Günther L (1956) Ophthalmologische Diabetesstudien. Klin Wschr 34:807–813

    Google Scholar 

  • Karwoski CJ, Proenza LM (1978) Light-evoked changes in extracellular potassium concentration in mudpuppy retina. Brain Res 142:515–530

    Google Scholar 

  • Karwoski CJ, Proenza LM (1980) Neurons, potassium, and glia in proximal retina of Necturus. J Gen Physiol 75:141–162

    Google Scholar 

  • Kreibig W (1961) Das Auge und sein Hilfsapparat. In: Kaufmann E und Staemmler M (Hrsg) Lehrbuch der speziellen pathologischen Anatomie, Bd III, T1 2, S 1059–1079. Gruyter, Berlin

    Google Scholar 

  • Miller RF, Dowling JE (1970) Intracellular responses of the Müller (glial) cells of mudpuppy retina: Their relation to b-wave of the electroretinogram. J Neurophysiol 33:323–341

    Google Scholar 

  • Miller RF, Dowling JE (1972) A relationship between Müller cell slow potentials and the ERG b-wave. VIII Symp Iscerg, Pisa, Pacini pp 85–100

  • Miller RF (1973) Role of K+ in generation of b-wave of electroretinogram. J Neurophysiol 36:28

    Google Scholar 

  • Miller RF, Dacheux R, Proenza L (1977) Müller cell depolarization evoked by antidromic optic nerve stimulation. Brain Res 121:162–166

    Google Scholar 

  • Mori S, Miller WH, Tomita T (1976) Microelectrode study of spreading depression (SD) in frog retina. Jap J Physiol 26:203–233

    Google Scholar 

  • Murakami M, Kaneko A (1966) Differentiation of P III subcomponents in cold-blooded vertebrate retinas. Vision Res 6:627–636

    Google Scholar 

  • Niesel P (1976) Pathophysiologie der Hamodynamik. X. Kongreß Ges Augenärzte DDR

  • Noell WK (1954) The orign of the electroretinogram. Amer J Ophthalmol 38:78–93

    Google Scholar 

  • Remé Ch, Niemeyer G (1975) Studies on the ultrastructure of the retina in the isolated and superfused feline eye. Vision Res 15:809–811

    Google Scholar 

  • Santamaria L, Drujan B, Svaetichin G, Negishi K (1971) Respiration, glycolysis and S-potentials in telcost retina: a comparative study. Vision Res 11:877

    Google Scholar 

  • Straub W (1961) Das Elektroretinogramm. Ferdinand Enke, Stuttgart

    Google Scholar 

  • Tomita T (1978) ERG waves and retinal cell function. Sensory Processes 2:276–284

    Google Scholar 

  • Wolter JR (1961) Diabetic retinopathy. Amer J Ophthalmol 51:1223–1240

    Google Scholar 

  • Yonemura D, Aoki T, Tsuzuki K (1962) Electroretinogram in diabetic retinopathy. Arch Ophthalmol 68:19–24

    Google Scholar 

  • Yonemura D, Hatta M (1966) Localization of the minor components of the frog's electroretinogram. Proc 4th ISCERG Symp (JJO 10, Suppl, Tokyo) pp 149–154

  • Yonemura D (1977) An electrophysiological study on activities of neuronal and non-neuronal retinal elements in man with reference to its clinical application. Acta Soc Ophthalmol Jap 81:1632–1664

    Google Scholar 

  • Yonemura D, Kawasaki K (1979) New approaches to ophthalmic electrodiagnosis by retinal oscillatory potential, drug-induced responses from retinal pigment epithelium and cone potential. Doc Ophthalmol 48:163–222

    Google Scholar 

  • Zuckerman R, Weiter JJ (1980) Oxygen transport in the bullfrog retina. Exp Eye Res 30:117–127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, U., Reichenbach, A., Siwula, H. et al. Die Veränderungen des Zellbesatzes der Netzhaut beim Diabetiker. Albrecht von Graefes Arch. Klin. Ophthalmol. 216, 245–251 (1981). https://doi.org/10.1007/BF00408166

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408166

Navigation