Skip to main content
Log in

Heterogeneity of kinetic parameters of enzymes in situ in rat liver lobules

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

In the present review, metabolic compartmentation in liver lobules is discussed as being dynamic and more complex than thus far assumed on the basis of numbers of mRNA or protein molecules or the capacity (zero-order activity) of enzymes. Isoenzyme distribution patterns and local kinetic parameters of enzymes may vary over the different zones of liver lobules. As a consequence, metabolic fluxes in vivo at physiological substrate concentrations may be completely different from those that are assumed on the basis of the number of molecules or the capacity of enzymes present in zones of liver lobules. For a more correct estimation of the levels of metabolic processes in the different compartments of liver tissue, local kinetic parameters and substrate concentrations have to be determined to calculate local metabolic fluxes. direct measurements of metabolic fluxes in vivo with the use of noninvasive techniques is a promising alternative and the techniques will become increasingly important in future metabolic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen B, Zierz S, Jungermann K (1984) Alteration in zonation of succinate dehydrogenase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in regenerating rat liver. Histochemistry 80:97–101

    PubMed  Google Scholar 

  • Aragón JJ, Sols A (1991) Regulation of enzyme activity in the cell: effect of enzyme concentration. FASEB J 5:2945–2950

    PubMed  Google Scholar 

  • Blanco CE, Sieck GC (1992) Quantitative determination of calcium-activated myosin adenosine triphosphatase activity in rat skeletal muscle fibres. Histochem J 24:431–444

    PubMed  Google Scholar 

  • Brinkmann A, Katz N, Sasse D, Jungermann K (1978) Increase of the gluconeogenic and decrease of the glycolytic capacity of rat liver with a change of the metabolic zonation after partial hepatectomy. Biol Chem Hoppe Seyler 359:1561–1571

    Google Scholar 

  • Bublitz C (1981) Physical separation of cytoplasmic and microsomal 6-phosphogiuconate dehydrogenases from rat liver. Biochem Biophys Res Commun 98:588–594

    PubMed  Google Scholar 

  • Bublitz C, Lawler CA, Steavenson S (1987) The topology of phosphogluconate dehydrogenases in rat liver microsomes. Arch Biochem Biophys 259:22–28

    PubMed  Google Scholar 

  • Francavilla A, Eagon PK, Dileo A, Polimeno L, Panella C, Aquilino AM, Ingrosso M, Van Thiel DH, Starzl TE (1986) Sex hormone-related functions in regenerating male rat liver. Gastroenterology 91:1263–1270

    PubMed  Google Scholar 

  • Francavilla A, Gavaler JS, Makowka L, Barone M, Mazzaferro V, Ambrosino G, Iwatsuki S, Guglielmi FW, Dileo A, Balestrazze A, Van Thiel DH, Starzl TE (1989) Estradiol and testosterone levels in patients undergoing partial hepatectomy. A possible signal for hepatic regeneration? Dig Dis Sci 34:818–822

    PubMed  Google Scholar 

  • Frederiks WM, Marx F (1990) The effect of ischemia on glycogen phosphorylase activity in, rat liver: a quantitative histochemical study. Anal Cell Pathol 2:347–355

    PubMed  Google Scholar 

  • Frederiks WM, Van Noorden CJF, Aronson DC, Marx F, Bosch KS, Jonges GN, Vogels IMC, James J (1990) Quantitative changes in acid phosphatase, alkaline phosphatase and 5′-nu-cleotidase activity in rat liver after experimentally induced cholestasis. Liver 10:158–166

    PubMed  Google Scholar 

  • Fulton AB (1982) How crowded is the cytoplasm? Cell 30:345–347

    PubMed  Google Scholar 

  • Gaasbeek Janzen JW, Moorman AFM, Lamers WH, Charles R (1985) Development, of the heterogeneous distribution of carbamoyl-phosphate synthetase (ammonia) in rat liver parenchyma during postnatal development. J Histochem Cytochem 33:1205–1211

    PubMed  Google Scholar 

  • Gebhardt R (1992) Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol Ther 53:275–354

    PubMed  Google Scholar 

  • Gebhardt R, Mecke D (1983) Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. EMBO J 2:567–570

    PubMed  Google Scholar 

  • Geerts WJC, Verburg M, Jonker A, Das AT, Moorman AFM, De Boer PAJ, Wagenaar GTM, Lamers WH, Van Noorden CJF (1994) Regulation of GDH expression in rat liver. Proc R Microsc Soc 29:241–242

    Google Scholar 

  • Griffini P, Freitas I, Vigorelli E, Van Noorden, CJF (1994) Changes in the zonation of lactate dehydrogenase activity in lobules of rat liver after experimentally induced colon carcinoma metastases. Anticancer Res 14 (in press)

  • Groen AK, Van Der Meer R, Westerhoff HV, Wanders RJA, Akerboom TPM, Tager JM (1982) Control of metabolic fluxes. In: Sies H (ed) Metabolic compartmentation. Academic Press, New York pp 9–37

    Google Scholar 

  • Gutschmidt S (1981) “In situ” determinations of apparentK m andV max of brush border disaccharidases along the villi of normal human jejunal biopsy specimens. A quantitative histochemical study. Histochemistry 71:451–462

    PubMed  Google Scholar 

  • Gutschmidt S, Emde C (1981) Early changes in brush border disaccharidase kinetics in rat jejunum following subcutaneous administration of tetraiodothyronine. Histochemistry 73:151–160

    PubMed  Google Scholar 

  • Gutschmidt S, Gossrau R (1981) A quantitative histochemical study of dipeptidylpeptidase IV (DPP IV). Histochemistry 73:285–304

    PubMed  Google Scholar 

  • Häussinger D, Lamers WH, Moorman AFM (1992) Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme 46:72–93

    PubMed  Google Scholar 

  • Hildebrand R (1984) Quantitative and qualitative histochemical investigation on NADP+-dependent dehydrogenases in the limiting plate and the residual parenchyma surrounding terminal hepatic venules. Histochemistry 80:91–95

    PubMed  Google Scholar 

  • Hosemann W, Teutsch HF, Sasse D (1979) Identification of G6PDH-active sinusoidal cells as Kupffer cells in the rat liver. Cell Tissue, Res 196:237–247

    Google Scholar 

  • Jonges GN, Van Noorden CJF (1989) In situ kinetic parameters of glucose-6-phosphate dehydrogenase and, phosphogluconate dehydrogenase in different areas of the rat liver acinus. Histochem J 21:585–594

    PubMed  Google Scholar 

  • Jonges GN, Van Noorden CJF, Lamers WH (1992) In situ kinetic parameters of glucose-6-phosphatase in the rat liver lobules. J Biol Chem 267:4878–4881

    PubMed  Google Scholar 

  • Jonges GN, Vogels IMC, Bosch KS, Dingemans KP, Van Noorden CJF (1993) Experimentally induced colon cancer metastases in the rat liver affect the proliferation rate and capacity for purine catabolism in liver cells. Histochemistry 100:41–51

    PubMed  Google Scholar 

  • Jonges GN, Vogels IMC, Van Noorden CJF (1995) Effects of partial hepatectomy, phenobarbital and 3-methylcholanthrene on kinetic parameters of glucose-6-phosphate and phosphogluconate dehydrogenase in situ in periportal, intermediate and pericentral zones of rat liver lobules. Biochim Biophys Acta, in press

  • Jonker A, Geerts WJC, Charles R, Lamers WH, Van Noorden CJF (1995) Image analysis and image processing as a tool to measure initial rates of enzyme reactions throughout the liver lobule with glutamate dehydrogenase as a model system. J Histochem Cytochem, in press

  • Jungermann K (1986a) Dynamics of zonal hepatocyte heterogeneity. Perinatal development and adaptive alterations during regeneration after partial hepatectomy, starvation and diabetes. Acta Histochem Suppl 32:89–98

    Google Scholar 

  • Jungermann K (1986b), Zonal signal heterogeneity and induction of hepatocyte heterogeneity. In: Thurman RG, Kauffman FC, Jungermann K (eds) Regulation of hepatic metabolism: intraand intercellular compartmentation. Plenum Press, New York, pp 445–469

    Google Scholar 

  • Jungermann K (1987) Metabolic zonation of liver parenchyma: significance for the regulation of glycogen metabolism, gluconeogenesis, and glycolysis. Diabetes Metab Rev 3:269–293

    PubMed  Google Scholar 

  • Jungermann K (1988) Metabolic zonation of liver parenchyma. Semin Liver Dis 8:329–341

    PubMed  Google Scholar 

  • Jungermann K (1992) Zonal liver cell heterogeneity. Enzyme 46:5–7

    PubMed  Google Scholar 

  • Jungermann K, Sasse D (1978) Heterogeneity of liver, parenchymal cells. Trends Biochem Sci 3:198–202

    Google Scholar 

  • Jungermann K, Katz N (1982) Functional hepatocellular heterogeneity. Hepatology 2:385–395

    PubMed  Google Scholar 

  • Jungermann K, Katz K (1986) Metabolism of carbohydrates. In: Thurman RG, Kauffman FC, Jungermann K (eds) Regulation of hepatic metabolism: intra- and intercellular compartmentation. Plenum Press, New York, pp 211–235

    Google Scholar 

  • Jungermann K, Katz K (1989) Functional specialization of different hepatocyte populations. Physiol Rev 69:708–764

    PubMed  Google Scholar 

  • Jungermann K, Thurman RG (1992) Hepatocyte heterogeneity in the metabolism of carbohydrates. Enzyme 46:33–58

    PubMed  Google Scholar 

  • Jungermann K, Gardemann A, Beuers U, Ballé C, Sannemann J, Beckh K, Hartmann H (1987) Regulation of liver metabolism by the hepatic nerves. Adv Enzyme Regul 26:63–88

    PubMed  Google Scholar 

  • Katz NR, (1989) Methods for the study of liver cell heterogeneity. Histochem J 21:517–529

    Google Scholar 

  • Katz N, Jungermann K (1976) Autoregulatory shift from fructolysis to lactate gluconeogenesis in rat hepatocyte suspensions. The problem of metabolic zonation of liver parenchyma. Biol Chem Hoppe Seyler 357:359–375

    Google Scholar 

  • Katz J, McGarry JD (1984), The glucose paradox. Is glucose a substrate for liver metabolism? J Clin Invest 74:1901–1909

    PubMed  Google Scholar 

  • Katz J, Kuwajima M, Foster DW, McGarry JD (1986) The glucose paradox: new perspectives on hepatic carbohydrate metabolism. Trends Biochem Sci 11:136–140

    Google Scholar 

  • Lamers WH, Gaasbeek Janzen JW, Te Kortschot A, Charles R, Moorman AFM (1987) Development of enzymic zonation in liver parenchyma is related to development of acinar architecture. Differentiation 35:228–235

    PubMed  Google Scholar 

  • Lamers WH, Hilberts A, Furt E, Smith J, Jonges GN, Van Noorden CJF, Gaasbeek Janzen JW, Charles R, Moorman AFM (1989) Hepatic enzymic zonation: a reevaluation of the concept of the liver acinus. Hepatology 10:72–76

    PubMed  Google Scholar 

  • Lei K-J, Shelly LL, Pan C-J, Sidbury JB, Chou JY (1993) Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a. Science 262:580–583

    PubMed  Google Scholar 

  • Loud AV (1968) Quantitative stereological description, of the ultrastructure of normal rat liver parenchymal cells. J Cell Biol 37:27–46

    PubMed  Google Scholar 

  • Maly IP, Sasse D (1988) Nutritional and gonadal effects on the intra-acinar profiles of low-K m and high-K m aldehyde dehydrogenase activity in rat liver. Histochemistry 88:387–393

    PubMed  Google Scholar 

  • Maly IP, Sasse D (1991) Intraacinar profiles of alcohol dehydrogenase and aldehyde dehydrogenase activities in human liver. Gastroenterlogy 101:1716–1723

    Google Scholar 

  • Maly IP, Toranelli M (1993) Ultrathin-layer zone electrophoresis of lactate dehydrogenase isoenzymes in microdissected liver samples. Anal Biochem 214:379–388

    PubMed  Google Scholar 

  • Maly IP, Toranelli M, Sasse D (1994) Intra-acinar profiles of cytosolic and mitochondrial malate dehydrogenase isoenzymes in rat liver. J Histochem Cytochem 42:855–860

    PubMed  Google Scholar 

  • Markovic N, Markovic O, Roberts J, Markovic S (1994) A new assay for intracellular measurement of inosine monophosphate dehydrogenase activity: a guide for better selection of patients for enzyme-targeted chemotherapy. J Histochem Cytochem 42:23–35

    PubMed  Google Scholar 

  • Masters CJ (1981) Interactions between soluble enzymes and subcellular structure. CRC Crit Rev Biochem 11:105–143

    PubMed  Google Scholar 

  • Medina R, Aragón JJ, Sols A (1985) Effect of polyethylene glycol on the kinetic behaviour of pyruvate kinase and other potentially regulatory liver enzymes. FEBS Lett 180:77–80

    PubMed  Google Scholar 

  • Meijer AJ, Lamers WH, Chamuleau RAFM (1990) Nitrogen metabolism and ornithine cycle function. Physiol Rev 70:701–748

    PubMed  Google Scholar 

  • Miethke H, Wittig B, Nath A, Zierz S, Jungermann K (1985) Metabolic zonation in liver of diabetic rats. Zonal distribution of phosphoenolpyruvate carboxykinase, pyruvate kinase, glucose-6-phosphatase and succinate dehydrogenase. Biol Chem Hoppe Seyler 366:493–501

    PubMed  Google Scholar 

  • Minton AP, Wilf J (1981) Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 20:4821–4826

    PubMed  Google Scholar 

  • Moorman AFM, Vermeulen JLM, Charles R (1989) Localization of ammonia-metabolizing enzymes in, human liver: ontogenesis of heterogeneity. Hepatology 9:367–372

    PubMed  Google Scholar 

  • Mueller-Klieser W, Walenta S (1993) Geographical mapping of metabolites in biological tissue with quantitative bioluminescence and single photon imaging. Histochem J 25:407–420

    PubMed  Google Scholar 

  • Nakae Y, Shono M (1984) Kinetic behaviour of succinate dehydrogenase of three fibre types in skeletal muscle. I. Effects of temperature and a competitive inhibitor. Histochem J 16:1207–1217

    PubMed  Google Scholar 

  • Nakae Y, Stoward PJ (1994) The diverse Michaelis constants and maximum velocities of lactate dehydrogenase in situ in various types of cell. Histochem J 26:292–297

    PubMed  Google Scholar 

  • Newham AP, Krieger K, Maly IP, Sasse D (1991) Changes in activity and intra-acinar distribution of glucose-6-phosphate dehydrogenase and malic enzyme during pregnancy in rat liver. Histochemistry 95:365–371

    PubMed  Google Scholar 

  • Newsholme EA, Start C (1976) Regulation in metabolism. Wiley, London

    Google Scholar 

  • Newsholme EA, Crabtree B, Zammit VA (1980) Use of enzyme activities as indices of maximum rates of fuel utilization. In: Evered D, O'Connor M (eds) Trends in enzyme histochemistry and cytochemistry. Excerpta Medica, Amsterdam, pp 245–258

    Google Scholar 

  • Novikoff AB (1959) Cell heterogeneity within the hepatic lobule of the rat (staining reactions). J Histochem Cytochem 7:240–244

    PubMed  Google Scholar 

  • Nuber R, Teutsch HF, Sasse D (1980) Metabolic zonation in thioacetamide-induced liver cirrhosis. Histochemistry 69:277–288

    PubMed  Google Scholar 

  • Ovádi J (1988) Old pathway-new concept: control of glycolysis by metabolite-modulated dynamic enzyme associations. Trends Biochem Sci 13:486–490

    PubMed  Google Scholar 

  • Petie D, Hofer HW (1980) The constant proportion enzyme group concept in the selection of reference enzymes in metabolism. In: Evered D, O'Connor M (eds) Trends in, enzyme histochemistry and cytochemistry. Excerpta Medica, Amsterdam, pp 231–244

    Google Scholar 

  • Rappaport AM (1976) The microcirculatory acinar concept of normal and pathological hepatic structure. Beitr Pathol 157:215–243

    PubMed  Google Scholar 

  • Rieder H, Teutsch HF, Sasse D (1978) NADP-dependent dehydrogenases in rat liver parenchyma. I. Methodological studies on the qualitative histochemistry of G6PDH, 6PGDH malic enzyme and ICDH. Histochemistry 56:283–298

    PubMed  Google Scholar 

  • Sasse D (1986) Liver structure and innervation. In: Thurman RG, Kauffman FC, Jungermann K (eds) Regulation of hepatic metabolism: intra-and intercellular compartmentation. Plenum Press, New York, pp 3–25

    Google Scholar 

  • Sasse D, Hoffmann H (1982) Postnatal differentiation of sex-specific distribution patterns of G6Pase, G6PDH and ME in the rat liver. Histochemistry 75:31–42

    PubMed  Google Scholar 

  • Sasse D, Möllinger H, Wimmer M (1983) Antagonistic reaction of the periportal and perivenous zone in the rat liver after castration and estrogen treatment. Histochemistry 79:383–395

    PubMed  Google Scholar 

  • Sasse D, Spornitz UM, Maly IP (1992) Liver architecture. Enzyme 46:8–32

    PubMed  Google Scholar 

  • Schelbert HR (1991) Positron emission tomography for the assessment of myocardial viability. Circulation 84:1122–1131

    Google Scholar 

  • Sokal EM, Trivedi P, Portmann B, Mowat AP (1990) Adaptive changes of metabolic zonation during the development of cirrhosis in growing rats. Gastroenterology 99:785–792

    PubMed  Google Scholar 

  • Stanton RC, Seifter JL, Boxer DC, Zimmerman E, Cantley LC (1991) Rapid release of bound glucose-6-phosphate dehydrogenase by growth factors. J Biol Chem 266:12442–12448

    PubMed  Google Scholar 

  • Swezey RR, Epel D (1986) Regulation of glucose-6-phosphate dehydrogenase activity in sea urchin eggs by reversible association with cell structural, elements. J Cell Biol 103:1509–1515

    PubMed  Google Scholar 

  • Swezey RR, Epel D (1988) Enzyme stimulation upon fertilization is revealed in electrically permeabilized sea urchin eggs. Proc Natl Acad Sci USA 85:812–816

    PubMed  Google Scholar 

  • Teutsch HF (1984) Sex-specific regionality of liver metabolism during starvation,; with special reference to the heterogeneity of the lobular periphery. Histochemistry 81:87–92

    PubMed  Google Scholar 

  • Thurman RG, Kauffman FC (1985) Sublobular compartmentation of pharmacological events (SCOPE): metabolic fluxes in periportal and pericentral regions of the liver lobule. Hepatology 5:144–151

    PubMed  Google Scholar 

  • Toth A, Tischler ME, Pal M, Koller A, Johnson PC (1992) A multipurpose instrument for quantitative intravital microscopy. J Appl Physiol 73:296–306

    PubMed  Google Scholar 

  • Van Noorden CJF, Frederiks WM (1992) Enzyme histochemistry. A laboratory manual of current methods. Oxford University Press, Oxford

    Google Scholar 

  • Van Noorden CJF, Jonges GN, (1995) Analysis of enzyme reactions in situ. Histochem J, in press

  • Van Noorden CJF, Frederiks WM, Aronson DC, Marx F Bosch KS, Jonges GN, Vogels IMC, James J (1987) Changes in the acinar distribution of some enzymes involved in carbohydrate metabolism in rat liver parenchyma after experimentally induced cholestasis. Virchows Arch B 52:501–511

    PubMed  Google Scholar 

  • Van Noorden CJF, Vogels IMC, James J (1994) Adaptive sex-dependent changes in the zonation of carbohydrate and lipid metabolism in rat liver lobules after partial hepatectomy. Hepatology 20:714–724

    PubMed  Google Scholar 

  • Van Thiel DH, Stauber RE, Gavaler JS, Rosenbaum E (1990) Evidence for modulation of hepatic mass by estrogens and hepatic “feminization”. Hepatology 12:547–552

    PubMed  Google Scholar 

  • Wagenaar GTM, Chamuleau RAFM, De Haan JG, Maas MAW, De Boer PAJ, Marx F, Moorman AFM, Frederiks WM, Lamers WH (1993a) Experimental evidence that the physiological position of the liver within the circulation is not a major determinant of zonation of gene expression. Hepatology 18:1145–1153

    Google Scholar 

  • Wagenaar GTM, Chamuleau RAFM, Pool CW, De Haan JG, Maas MAW, Korfage HAM, Lamers WH (1993b) Distribution and activity of glutamine synthase and carbamoylphosphate synthase upon enlargement of the liver lobule by repeated partial hepatectomies. J Hepatol 17:397–407

    PubMed  Google Scholar 

  • Walsh TP, Clarke FM, Masters CJ (1977) Modification of the kinetic parameters of aldolase on binding to the actin-containing filaments of skeletal muscle. Biochem J 165:165–167

    PubMed  Google Scholar 

  • Wimmer M (1989a) Effects of starvation and refeeding a high carbohydrate diet on the intra-acinar distribution pattern of phosphoenolpyruvate carboxykinase activity in the liver of male and female rats. Histochemistry 92:331–336

    PubMed  Google Scholar 

  • Wimmer M (1989b) The effect of sex hormones on the acinar distribution pattern of phosphoenolpyruvate carboxykinase activity in rat liver. Biol Chem Hoppe Seyler 370:683–690

    PubMed  Google Scholar 

  • Wimmer M, Luttringer C, Colombi M (1990) Changes in the acinar activity patterns of phosphoenolpyruvate carboxykinase in livers of male and female rats upon feeding, a high protein and a high fat diet. Histochemistry 93:257–262

    PubMed  Google Scholar 

  • Withrington PG, Richardson PDI (1986) Hepatic hemodynamics and microcirculation. In: Thurman RG, Kauffman FC, Jungermann K (eds) Regulation of hepatic metabolism: intra- and intercellular compartmentation. Plenum Press, New York, pp 27–53

    Google Scholar 

  • Wittig B, Zierz S, Gubernatis G, Nath A, Jungermann K (1985) Glucostat capacity and metabolic zonation in rat liver after portocaval anastomosis. Biol Chem Hoppe Seyler 366:713–722

    PubMed  Google Scholar 

  • Zierz S, Jungermann K (1984) Alteration with dietary state of the activity and zonal distribution of adenylate cyclase stimulated by glucagon, fluoride and forskolin in microdissected rat liver tissue. Eur J Biochem 145:499–504

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Noorden, C.J.F., Jonges, G.N. Heterogeneity of kinetic parameters of enzymes in situ in rat liver lobules. Histochem Cell Biol 103, 93–101 (1995). https://doi.org/10.1007/BF01454005

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01454005

Keywords

Navigation