Skip to main content
Log in

Utilization of sulfonic acids as the only sulfur source for growth of photosynthetic organisms

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Growth on ethanesulfonic acid as the only sulfur source was found to occur in ten of the 14 green algae tested and in three of the ten cyanobacteria analyzed. Similar growth could not be demonstrated in the higher plant Lemna minor, or in tissue cultures of anise, sunflower and tobacco.

Organisms growing on sulfonic acids as the only sulfur source developed an uptake system for ethanesulfonate found neither in algae growing on sulfate nor in algae unable to utilize sulfonic acids for growth. The development of sulfonate transport was not caused by substrate induction, but by conditions of sulfate starvation. The presence of this uptake system was always correlated with an increased sulfate-uptake capacity. Enhanced sulfate uptake was found in all S-deficient and sulfonate-grown cultures tested, indicating sulfate limitation as the regulatory signal. A lag period of 2–2.5 h after transfer to sulfate deprivation was needed for expression of both enhanced sulfate uptake and ethanesulfonate uptake in case of the green alga Chlorella fusca.

It is speculated that the availability of sulfate (pool size) or a metabolic product in equilibrium with oxidized sulfur compounds (sulfate ester? sulfolipids?) controls sulfate and sulfonate uptake systems. The principle of (coordinated) derepression by starvation is discussed as a general strategy in photosynthetic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, M.B. (1959) Studies with Cyanidium caldarium, an anomalous pigmented chlorophyte. Arch. Mikrobiol 32, 270–277

    Google Scholar 

  • Arnon, D.I. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulagaris. Plant Physiol. 24, 1–15

    Google Scholar 

  • Biedlingmaier, S., Schmidt, A. (1983) Alkylsulfonic acids and some S-containing detergents as sulfur sources for growth of Chlorella fusca. Arch. Microbiol 136, 124–130

    Google Scholar 

  • Biedlingmaier, S., Schmidt, A. (1986) Characterization of the non-constitutive ethanesulfonate uptake in Chlorella fusca. Biochim. Biophys. Acta 861, 95–104

    Google Scholar 

  • Bradfield, G., Somerfield, P., Meyn, T., Holby, M., Babcock, D., Bradley, D., Segel, I.H. (1970) Regulation fo sulfate transport in filamentous fungi. Plant Physiol. 46, 720–727

    Google Scholar 

  • Brunold, C., Erismann, K.H. (1974) H2S als Schwefelquelle bei Lemna minor. Einfluß auf das Wachstum, den Schwefelgehalt und die Sulfataufnahme. Experientia 30, 465–467

    Google Scholar 

  • Clarkson, D.T., Smith, F.W., Vandenberg, P.J. (1983) Regulation of sulfate transport in a tropical legume, Macroptilium atropurpureum vc. Siratro. J. Exp. Bot. 34, 1463–1483

    Google Scholar 

  • Datko, A.H., Mudd, S.H. (1984) Sulfate uptake and its regulation in Lemna paucicostata Hegelm 6746. Plant Physiol. 75, 466–473

    Google Scholar 

  • Deane, E.M., O'Brien, R.W. (1975) Sulfate uptake and metabolism in the chrysomonad Monochrysis lutheri. Arch. Microbiol. 105, 295–301

    Google Scholar 

  • Deane, E.M., O'Brien, R.W. (1981) Uptake of sulfate, taurine, cysteine and methionine by symbiotic and free-living dinoflagellates. Arch. Microbiol. 128, 311–319

    Google Scholar 

  • Dreyfuss, U. (1964) Characterization of sulfate and thiosulfate transporting system in Salmonella typhimurium. J. Biol. Chem. 239, 2292–2297

    Google Scholar 

  • Dunham, S.M., Thurston, C.F. (1978) Control of isocitrate lyase synthesis in Chlorella fusca var. vacuolata. Biochem. J. 176, 179–189

    Google Scholar 

  • Epstein, E. (1976) Kinetics of ion transport and the carrier concept. In: Transport in plants II, pp. 70–94, Lüttge, W., Pitman, M.G. eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Greenblatt, C.L., Schiff, J.A. (1959) A phaeophytin like pigment in the dark adapted Euglena gracilis. J. Protozool. 6, 23–28

    Google Scholar 

  • Haas, D., Tanner, WE. (1974) Regulation of hexose transport in Chlorella vulgaris. Characteristics of induction and turnover. Plant Physiol. 53, 14–20

    Google Scholar 

  • Houlton, H.G., Tartar, H.V. (1938) Raman spectra of sodium alkyl sulfonates and sulfinates. J. Am. Chem. Soc. 60, 544–549

    Google Scholar 

  • Kondo, H., Anada, H., Osawa, K., Ishimoto, M. (1971) Formation of sulfoacetaldehyde from taurine in bacterial extracts. J. Biochem. 69, 621–623

    Google Scholar 

  • Köst, E. (1978) Untersuchungen zur Protein-Chromophor-Bindung unter Verwendung der radioaktiven Markierung mit 35S am Beispiel von B-Phycoerythrin aus Porphyridium cruentum. Thesis, München

  • Kudielka, R.A., Theimer, R.R. (1983) Somatic embryogenesis in anise (Pimpinella anisum L.) cell cultures in microgravity environment. Proc. Workshop Space Biology, Cologne, pp. 63–68

  • Lee, R.B. (1982) Selectivity and kinetics of ion uptake by barley plants following nutrient deficiency. Ann. Bot. 50, 429–449

    Google Scholar 

  • McLachlan, J. (1960) The culture of Dunaliella tertiolecta Butcher, a euryhaline organism. Can. J. Microbiol 6, 367–379

    Google Scholar 

  • Niedermeyer, L (1985) Arylsulfataseaktivität in Chlorella fusca. Ihre Regulation durch Derepression unter Schwefelmangel. Diplomarbeit, München

  • Nissen, P. (1974) Uptake mechanisms: inorganic and organic. Annu Rev. Plant Physiol 25, 53–79

    Google Scholar 

  • Schlösser, U.G. (1982) Sammlung von Algenkulturen (Origin and function of the culture collection). Ber. Dtsch. Bot. Ges. 95, 181–276

    Google Scholar 

  • Schmidt, A. (1972) über Teilreaktionen der photosynthetischen Sulfatreduktion in zellfreien Systemen aus Spinatchloroplasten und Chlorella. Z. Naturforsch. 27b, 183–192

    Google Scholar 

  • Shimamoto, G., Berk, R.S. (1979) Catabolism of taurine in Pseudomonas aeruginosa. Biochim. Biophys. Acta 569, 287–292

    Google Scholar 

  • Smith, I.K. (1975) Sulfate transport in cultured tobacco cells. Plant Physiol. 55, 303–307

    Google Scholar 

  • Smith, I.K. (1980) Regulation of sulfate assimilation in tobacco cells. Effect of nitrogen and sulfur nutrition on sulfate permease and O-acetylserine sulfhydrylase. Plant Physiol. 66, 877–883

    Google Scholar 

  • Stanier, R.Y., Kunisawa, R., Mandel, M., Cohen-Bazire, G. (1971) Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol. Rev. 35, 171–205

    Google Scholar 

  • Stapley, E.O., Starkey, R.L. (1970) Decomposition of cysteic acid and taurine by soil micro-organisms. J. Gen. Microbiol. 64, 77–84

    Google Scholar 

  • Tweedie, J. W., Segel, I.H. (1970) Specificity of transport processes for sulfur, selenium and molybdenium anions by a filamentous fungus. Biochim. Biophys. Acta 196, 95–106

    Google Scholar 

  • Utkilen, H.C., Heldal, M., Knutsen, G. (1976) Characterization of sulfate uptake in Anacystis nidulans. Physiol. Plant. 39, 217–220

    Google Scholar 

  • Vallée, M., Jeanjean, R. (1968) Le système de transport de SO 2-4 chez Chlorella pyrenoidosa et sa régulation II. Recherches sur la régulation de l'entrée. Biochim. Biophys. Acta 150, 607–617

    Google Scholar 

  • Yamamoto, L.A., Segel, H. (1966) The inorganic sulfate transport system of Penicillium chrysogenum. Arch. Biochem. Biophys. 114, 523–538

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biedlingmaier, S., Köst, H.P. & Schmidt, A. Utilization of sulfonic acids as the only sulfur source for growth of photosynthetic organisms. Planta 169, 518–523 (1986). https://doi.org/10.1007/BF00392101

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392101

Key words

Navigation