Skip to main content
Log in

Plasmatubules in the pollen tubes of Nicotiana sylvestris

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Ultrastructural studies of the pollen tubes of Nicotiana sylvestris grown in the pistil revealed an extensive development of plasmatubules formed by evaginations of the plasma membrane. The plasmatubules occurred as twisted tubular structures in the periplasmic space along the tube wall and, in cross section, exhibited circular profiles with an outer diameter of 28±4 nm. They were also seen in deep, pocket-like invaginations of the plasma membrane and in this case the profiles had an outer diameter of 34±8 nm. In the pocket-like invaginations they were partially branched and often closely packed to form groups with obvious patterns. The enlargement of the plasma-membrane area resulting from plasmatubules formed along the tube wall was about six-to tenfold. Pollen tubes grown in vitro exhibited poorly developed plasmatubules. It is suggested that the large extension of the plasma membrane could enhance the uptake of nutrients, and thus might be responsible for the comparatively fast growth of pollen tubes in the pistil. Moreover, it is also assumed that the turnover rate of the Golgi apparatus must be higher in pollen tubes growing in vivo than in vitro, in order to provide a sufficient amount of membrane for the formation of the plasma membrane with its tubular modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnabas, A.D., Butler, V., Steinke, T.D. (1982) Zostera capensis Setchell: III. Some aspects of wall ingrowth development in leaf blade epidermal cells. Protoplasma 110, 87–94

    Google Scholar 

  • Barton, R. (1965) An unusual organelle in the peripheral cytoplasm of Chara cells. Nature 205, 201

    Google Scholar 

  • Chaffey, N.J., Harris, N. (1985) Plasmatubules: fact or artefact? Planta 165, 185–190

    Google Scholar 

  • Coetzee, J., Fineran, B.A. (1987) The apoplastic continuum, nutrient absorption and plasmatubules in the dwarf mistletoe Korthalsella lindsayi (Viscaceae). Protoplasma 136, 145–153

    Google Scholar 

  • Dashek, W.V., Harwood, H.I. (1974) Proline, hydroxy proline and lily pollen tube elongation. Ann. Bot. 38, 947–959

    Google Scholar 

  • Deshusses, J., Gumber, S.C., Loewus, F.A. (1981) Sugar uptake in lily pollen. A proton symport. Plant Physiol. 67, 793–796

    Google Scholar 

  • Evert, R.F., Eschrich, W., Neuberger, D.S., Eichhorn, S.E. (1977) Tubular extensions of the plasmalemma in leaf cells of Zea mays L. Planta 135, 203–205

    Google Scholar 

  • Franceschi, V.R., Lucas, W.J. (1982) The relationship of the charasome to chloride uptake in Chara corallina: physiological and histochemical investigations. Planta 154, 525–537

    Google Scholar 

  • Gunning, B.E.S., Pate, J.S. (1974) Transfer cells. In: Dynamic aspects of plant ultrastructure, pp. 441–480, Robards, A.W., ed. McGraw-Hill, London

    Google Scholar 

  • Harris, N. (1981) Plasmalemmasomes in cytoledons of germinating Vigna radiata L. (mung-beans). Plant Cell Environ. 4, 169–175

    Google Scholar 

  • Harris, N., Chaffey, N.J. (1985) Plasmatubules in transfer cells of pea (Pisum sativum L.). Planta 165, 191–196

    Google Scholar 

  • Harris, N., Chaffey, N.J. (1986) Plasmatubules—real modifications of the plasmalemma. Nord. J. Bot. 6, 599–607

    Google Scholar 

  • Harris, N., Oparka, K.J., Walker-Smith, D.J. (1982) Plasmatubules: an alternative to transfer cells? Planta 156, 461–465

    Google Scholar 

  • Jensen, W.A., Fisher, D.B. (1970) Cotton embryogenesis: the pollen tube in the stigma and style. Protoplasma 69, 215–235

    Google Scholar 

  • Kandasamy, M.K., Kristen, U. (1987) Pentachlorophenol affects mitochondria and induces formation of Golgi apparatus-endoplasmic reticulum hybrids in tobacco pollen tubes. Protoplasma (in press)

  • Karnovsky, M.J. (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27, 137A-138A

    Google Scholar 

  • Kristen, U. (1969) Licht- und elektronenmikroskopische Untersuchungen an den Hydropoten von Nuphar lutea, Nymphoides peltata, Sagittaria macrophylla und Salvia auriculata. Flora A 159, 536–556

    Google Scholar 

  • Labarca, C., Loewus, F. (1972) The nutritional role of pistil exudate in pollen tube wall formation in Lilium longiflorum: utilization of injected stigmatic exudate. Plant Physiol. 50, 7–14

    Google Scholar 

  • Loewus, F., Labarca, C. (1973) Pistil secretion product and pollen tube wall formation. In: Biogenesis of plant cell wall polysaccharides, pp. 175–193, Loewus, F., ed. Academic Press, New York London

    Google Scholar 

  • Lucas, W.J., Keifer, D.W., Pesacreta, T.C. (1986) Influence of culture medium pH on charasome development and chloride transport in Chara corallina. Protoplasma 130, 5–11

    Google Scholar 

  • Marchant, R., Moore, R.T. (1973) Lomasomes and plasmalemmasomes in fungi. Protoplasma 76, 235–247

    Google Scholar 

  • Morré, D.J., Mollenhauer, H.H. (1974) The endomembrane concept. A functional integration of endoplasmic reticulum and Golgi apparatus. In: Dynamic aspects of plant ultrastructure, pp. 84–137, Robards, A.W., ed. McGraw-Hill, London

    Google Scholar 

  • O'Kelley, J.C. (1955) External carbohydrates in growth and respiration of pollen tubes in vitro. Am. J. Bot. 42, 322–326

    Google Scholar 

  • Pate, J.S., Gunning, B.E.S. (1972) Transfer cells. Annu. Rev. Plant Physiol. 23, 173–196

    Google Scholar 

  • Picton, J.M., Steer, M.W. (1981) Determination of secretory vesicle production rates by dictyosomes in pollen tubes of Tradescantia using cytochalasin D. J. Cell Sci. 49, 261–272

    Google Scholar 

  • Robinson, D.G., Kristen, U. (1982) Membrane flow via the Golgi apparatus of higher plant cells. Int. Rev. Cytol. 77, 89–127

    Google Scholar 

  • Sharma, S., Singh, M.B., Malik, C.P. (1981) Metabolism of C14-labelled sugars and proline during germination of Amaryllis vittata pollen. Comp. Physiol. Ecol. 7, 91–93

    Google Scholar 

  • Stanley, R.G., Linskens, H.F. (1964) Enzyme activation in germinating Petunia pollen. Nature 203, 542–544

    Google Scholar 

  • Spurr, A.R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43

    Google Scholar 

  • Thomas, M.K., Dnyansagar, V.R. (1975) Carbohydrate metabolism in pollen of Petunia nyctaginiflora Juss. during germination and tube growth. Indian J. Exp. Biol. 13, 268–271

    Google Scholar 

  • Tupy, J. (1964) Metabolism of proline in styles and pollen tubes of Nicotiana alata. In: Pollen physiology and fertilization, pp. 86–94, Linskens, H.F., ed. North Holland, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandasamy, M.K., Kappler, R. & Kristen, U. Plasmatubules in the pollen tubes of Nicotiana sylvestris . Planta 173, 35–41 (1988). https://doi.org/10.1007/BF00394484

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00394484

Key words

Navigation