Skip to main content
Log in

Nucleotide sequence and regulated expression of the Salmonella fljA gene encoding a repressor of the phase 1 flagellin gene

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The nucleotide sequence of Salmonella abortus-equi fljA, which together with the phase 2 flagellin gene constitutes the fljBA operon and encodes the repressor for the phase 1 flagellin gene fliC, was determined. The repressor was predicted to be a basic protein consisting of 179 amino acid residues (Mr = 20419 Da) encoded by ORFII. This was confirmed by the fact that host fliC is repressed by plasmid-encoded ORFII, which indeed expresses a 20 kDa product as determined by urea SDS-polyacrylamide gel electrophoresis. An amino acid sequence capable of forming a helix-turn-helix type of structure was predicted in the C-terminal region of FljA. A rho-independent intercistronic terminator was detected between fljB and ftjA. Chloramphenicol acetyltransferase (CAT) assays of fusions indicated that the terminator is capable of reducing expression of fljA to the level of a few percent, relative to fljB in broth cultures and to 1 % in M9 glycerol cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An G, Bendiak D, Mamelak LA, Friesen JD (1981) Organization and nucleotide sequence of a new ribosomal operon in Escherichia coli containing the genes for ribosomal protein S2 and elongation factor Ts. Nucleic Acids Res 9:4163–4172

    Google Scholar 

  • Barry G, Squires C, Squires CL (1980) Attenuation and processing of RNA from the rp1JL-rpoBC transcription unit of Escherichia coli. Proc Natl Acad Sci USA 77:3331–3335

    Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW, Cross JH, Falkow S (1977) Construction and characterization of new cloning vehicles II. A multi-purpose cloning system. Gene 2:95–113

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Brennan RG, Matthews BW (1989) The Helix-Turn-Helix DNA binding motif. J Biol Chem 264:1903–1906

    Google Scholar 

  • Burton ZF, Gross CA, Watanabe KK, Burgess RR (1983) The operon that encodes the sigma subunit of RNA polymerase also encodes ribosomal protein S21 and DNA primase in E. coli K12. Cell 32:335–349

    Google Scholar 

  • Close TJ, Rodriguez RL (1982) Construction and characterization of the chloramphenicol-resistance gene cartridge: A new approach to the transcriptional mapping of extrachromosomal elements. Gene 20:305–316

    Google Scholar 

  • Csonka LN, Clark AJ (1980) Construction of an Hfr strain useful for transferring recA mutations between Escherichia coli strains. J Bacteriol 143:529–530

    Google Scholar 

  • Davis RW, Botstein D, Roth JR (1980) Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Defeyter RC, Davidson BE, Pittard J (1986) Nucleotide sequence of the transcription unit containing the aroL and aroM genes from Escherichia coli K-12. J Bacteriol 165:233–239

    Google Scholar 

  • Dodd IA, Egan JB (1987) Systematic method for the detection of potential λ Cro-like DNA-binding regions in proteins. J Mol Biol 194:557–564

    Google Scholar 

  • Enomoto M, Stocker BAD (1975) Integration, at hag or elsewhere, of H2 (phase-2 flagellin) genes transduced from Salmonella to Escherichia coli. Genetics 81:595–616

    Google Scholar 

  • Enomoto M, Oosawa K, Momota H (1983) Mapping of the pin locus coding for a site-specific recombinase that causes flagellar-phase variation in Escherichia coli K-12. J Bacteriol 163:663–668

    Google Scholar 

  • Enomoto M, Sakai A, Tominaga A (1985) Expression of an Escherichia coli flagellin gene, hag48, in the presence of a Salmonella III-repressor. Mol Gen Genet 201:133–135

    Google Scholar 

  • Felmlee T, Pellett S, Welch RA (1985) Nucleotide sequence of an Escherichia coli chromosomal hemolysin. J Bacteriol 163:94–105

    Google Scholar 

  • Fujita H, Yamaguchi S, Iino T (1973) Studies of O-H variants in Salmonella in relation to phase variation. J Gen Microbiol 76:127–134

    Google Scholar 

  • Gilbert W, Müller-Hill B (1970) The lactose repressor. In: Beckwith JR, Zipser D (eds) The lactose operon. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, p 93

    Google Scholar 

  • Goldberger RF, Deeley RG, Mullinix KP (1976) Regulation of gene expression in prokaryotic organisms. Adv Genet 18:1–67

    Google Scholar 

  • Hanafusa T, Sakai A, Tominaga A, Enomoto M (1989) Isolation and characterization of Escherichia coli hag operator mutants whose hag48 expression has become repressible by a Salmonella HI repressor. Mol Gen Genet 216:44–50

    Google Scholar 

  • Harrison SC, Aggarwal AK (1990) DNA recognition by proteins with the Helix-Turn-Helix motif. Annu Rev Biochem 59:933–969

    Google Scholar 

  • Hellinga HW, Evans PR (1985) Nucleotide sequence and high-level expression of the major Escherichia coli phosphofructokinase. Eur J Biochem 149:363–373

    Google Scholar 

  • Iino T (1974) Assembly of Salmonella flagellin in vitro and in vivo. J Supramol Struct 2:372–384

    Google Scholar 

  • Iino T (1977) Genetics of structure and function of bacterial flagella. Annu Rev Genet 11:166–182

    Google Scholar 

  • Ishii S, Kuroki K, Imamoto F (1984) tRNA METf2 gene in the leader region of the nusA operon in Escherichia coli. Proc Natl Acad Sci USA 81:409–413

    Google Scholar 

  • Iwakura Y, Ito K, Ishihama A (1974) Biosynthesis of RNA polymerase in Escherichia coli I. Mol Gen Genet 133:1–23

    Google Scholar 

  • Kolter R, Yanofsky C (1982) Attenuation in amino acid biosynthetic operons. Annu Rev Genet 16:113–134

    Google Scholar 

  • Komeda Y, Suzuki H, Ishidsu J, Iino T (1975) The role of CAMP in flagellation of Salmonella typhimurium. Mol Gen Genet 142:289–298

    Google Scholar 

  • Lupski JR, Smiley BL, Godson GN (1983) Regulation of the rpsU-dnaG-rpoD macromolecular synthesis operon and the initiation of DNA replication in Escherichia coli K-12. Mol Gen Genet 189:48–57

    Google Scholar 

  • Maloy SR, Nunn WD (1981) Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol 145:1110–1112

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–78

    Google Scholar 

  • Pabo CO, Sauer RT (1984) Protein-DNA recognition. Annu Rev Biochem 53:293–321

    Google Scholar 

  • Platt T (1986) Transcription termination and the regulation of gene expression. Annu Rev Biochem 55:339–372

    Google Scholar 

  • Post LE, Strycharz GD, Nomura M, Lewis H, Dennis PP (1979) Nucleotide sequence of the ribosomal protein gene cluster adjacent to the gene for RNA polymerase subunit β in Escherichia coli. Proc Natl Acad Sci USA 76:1697–1701

    Google Scholar 

  • Ralling G, Linn T (1984) Relative activities of the transcriptional regulatory sites in the rplKAJLrpoBC gene cluster of Escherichia coli. J Bacteriol 158:279–285

    Google Scholar 

  • Rodriguez RL, Tait RC (1983) Recombinant DNA techniques: An introduction. Addison-Wesley Publishing Company, London

    Google Scholar 

  • Sacerdot C, Dessen P, Hershey JWB, Plumbridge JA, Grunberg-Manago M (1984) Sequence of the initiation factor IF2 gene: Unusual protein features and homologies with elongation factors. Proc Natl Acad Sci USA 81:7787–7791

    Google Scholar 

  • Sanger FS, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schleif RF, Wensink PC (1981) Practical methods in molecular biology. Springer-Verlag, New York

    Google Scholar 

  • Schnetz K, Toloczyki C, Rak B (1987) β-glucoside (bgl) operon of Escherichia coli K-12: Nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J Bacteriol 169:2579–2590

    Google Scholar 

  • Shine J, Dalgarno L (1974) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71:1342–1346

    Google Scholar 

  • Silhavy TJ, Berman ML, Enquist LW (1984) Experiments with gene fusions. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Silverman M, Simon M (1974) Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J Bacteriol 120:1196–1203

    Google Scholar 

  • Silverman M, Zieg J, Simon M (1979) Flagellar-phase variation: isolation of the rhl gene. J Bacteriol 137:517–523

    Google Scholar 

  • Smiley BL, Lupski JR, Svec PS, McMacken R, Godson GN (1982) Sequences of the Escherichia coli dnaG primase gene and regulation of its expression. Proc Natl Acad Sci USA 79:4550–4554

    Google Scholar 

  • Soberon X, Covarrubias L, Bolivar F (1980) Construction and characterization of new cloning vehicles IV. Deletion derivatives of pBR322 and pBR325. Gene 9:287–305

    Google Scholar 

  • Stanley KK, Luzio JP (1984) Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones coding for human liver proteins. EMBO J 3:1429–1434

    Google Scholar 

  • Szekely E, Simon M (1983) DNA sequence adjacent to flagellar genes and evolution of flagellar-phase variation. J Bacteriol 155:74–81

    Google Scholar 

  • Tiedeman AA, Smith JM (1985) Nucleotide sequence of the guaB locus encoding IMP dehydrogenase of Escherichia coli K12. Nucleic Acids Res 13:1303–1316

    Google Scholar 

  • Tominaga A, Ikemizu S, Enomoto M (1991) Site-specific recombinase genes in three Shigella subgroups and nucleotide sequences of a pinB gene and an invertible B segment from Shigella boydii. J Bacteriol 173:4079–4087

    Google Scholar 

  • Trachtenberg S, DeRosier DJ (1987) Three-dimensional structure of the frozen-hydrated flagellar filament. The left-handed filament of Salmonella typhimurium. J Mol Biol 195:581–601

    Google Scholar 

  • Vieira J, Messing J (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153:3–11

    Google Scholar 

  • Yokota T, Gots JS (1970) Requirement of adenosine 3′, 5′-cyclic phosphate for flagella formation in Escherichia coli and Salmonella typhimurium. J Bacteriol 103:513–516

    Google Scholar 

  • Zieg J, Silverman M, Hilmen M, Simon M (1977) Recombination switch for gene expression. Science 196:170–172

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Isono

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanafusa, T., Saito, K., Tominaga, A. et al. Nucleotide sequence and regulated expression of the Salmonella fljA gene encoding a repressor of the phase 1 flagellin gene. Molec. Gen. Genet. 236, 260–266 (1993). https://doi.org/10.1007/BF00277121

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00277121

Key words

Navigation