Skip to main content
Log in

Ultrastructure of the neurogenic heart of Limulus polyphemus

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The ultrastructure of Limulus cardiac muscle was examined. The hearts were fixed in situ by perfusion with isotonic glutaraldehyde solution while in relaxed, contracted, or stretched states. The sarcomeres are relatively long, varying in length from about 2.5 to 6.6 μ. The average A-band length is 2.46 μ. M lines are absent, and H zones are poorly distinguished. Thick and thin filament diameters average about 200 Å and 50 Å, respectively; each thick filament is surrounded by 8–12 thin ones. Superficial invaginations of the sarcolemma occur, making contact with the Z lines of the outermost myofibrils. There is an extensive sarcoplasmic reticulum and transverse (T) tubules. Some T tubules run longitudinally and some open into deep sarcolemmal invaginations which extend into the fiber interior. The T tubules swell markedly in hypertonic solution. Single neurons and small bundles of neurons are observed in close apposition with myocardial cells. Intercalated disks are found in Limulus heart at regions of contact between contiguous myocardial cells lying end to end; semitight or gap junctions are essentially absent. Prominent differences in sarcomere lengths sometimes occur across the disk, thus indicating that the disks demarcate cells functionally. Hence, in addition to direct motoneuron activation, there may be some transfer of excitation across the intercalated disks in accord with our previous finding that propagating, overshooting action potentials can be induced in this heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, B. C., Lang, F., Parnas, I.: Physiological properties of the heart and cardiac ganglion of Limulus polyphemus. Comp. Biochem. Physiol. 28, 149–158 (1969).

    Google Scholar 

  • —, Parmley, W., Sonnenblick, E.: Physiological and pharmacological properties of Limulus heart. Experientia (Basel), Suppl. 15, 232–243 (1969).

    Google Scholar 

  • Brandt, P. W., Reuben, J. P., Girardier, L., Grundfest. H.: Correlated morphological and physiological studies on isolated single muscle fibers. I. Fine structure of the crayfish muscle fiber. J. Cell Biol. 25, 233–260 (1965).

    Google Scholar 

  • De Mello, W. C., Motta, G. E., Chapeau, M.: A study of the healing-over of myocardial cells in toads. Circulat. Res. 24, 475–487 (1969).

    Google Scholar 

  • Dreifuss, J. J., Girardier, L., Forssmann, W. G.: Etude de la propagation de l' excitation dans le ventricule de rat au moyen de solutions hypertoniques. Pflügers Arch. ges. Physiol. 292, 13–33 (1966).

    Google Scholar 

  • Edwards, G. A., Challice, C. E.: The ultrastructure of the heart of the cockroach, Blatella germanica. Ann. Entomol. Soc. Amer. 53, 369–383 (1960).

    Google Scholar 

  • Fahrenbach, W. H.: The fine structure of fast and slow crustacean muscles. J. Cell Biol. 35, 69–79 (1967).

    Google Scholar 

  • Forbes, M. S., Sperelakis, N.: Ultrastructure of lizard ventricular muscle. J. Ultrastruct. Res. 34, 408–417 (1971).

    Google Scholar 

  • Forssmann, W. G., Giradier, L.: Untersuchungen zur Ultrastruktur des Rattenherzmuskels mit besonderer Berücksichtigung des sarcoplasmatischen Retikulums. Z. Zellforsch. 72, 249–275 (1966).

    Google Scholar 

  • Freygang, W. H., Jr., Goldstein, D. A., Hellam, D. C., Peachey, L. D.: The after-potential that follows trains of impulses in frog muscle fibers. J. gen. Physiol. 47, 929–952 (1964).

    Google Scholar 

  • Gillis, J. M.: The site of action of calcium in producing contraction in striated muscle. J. Physiol. (Lond.) 200, 849–864 (1969).

    Google Scholar 

  • Hagopian, M.: The myofilament arrangement in the femoral muscle of the cockroach, Leucophaea moderat Fabricius. J. Cell Biol. 28, 545–554 (1966).

    Google Scholar 

  • Huxley, H. E., Hanson, J.: The molecular basis of contraction in cross-striated muscles. In: The structure and function of muscle, ed. by G. H. Bourne, p. 183–227. New York: Academic Press 1960.

    Google Scholar 

  • Huxley, H. E., Page, S., Wilkie, D. R.: The osmotic properties of striated muscle fibres in hypertonic solutions. J. Physiol. (Lond.) 169, 312–329 (1963).

    Google Scholar 

  • Irisawa, A., Hama, K.: Some observations on the fine structure of the mantis shrimp heart. Z. Zellforsch. 68, 647–688 (1965).

    Google Scholar 

  • Jahromi, S. S., Atwood, H. L.: Ultrastructural features of crayfish phasic and tonic muscle fibers. Canad. J. Zool. 45, 601–606 (1967).

    Google Scholar 

  • Kawaguti, S.: Electron microscopic study on the cardiac muscle of the crayfish. Biol. J. Okayama Univ. 9, 1–10 (1963).

    Google Scholar 

  • —: Electron microscopic study on the cardiac muscle of the horseshoe crab. Biol. J. Okayama Univ. 9, 11–26 (1963).

    Google Scholar 

  • Leyton, R. A., Sonnenblick, E. H.: Changes in ultrastructure and function in cardiac muscle of the horseshoe crab, Limulus polyphemus. Fed. Proc. 29, 390 (1970).

    Google Scholar 

  • McCann, F. V.: Electrical activity in single myocardial cells of Limulus polyphemus. Science 137, 340–341 (1962).

    Google Scholar 

  • —: Unique properties of the moth myocardium. Ann. N. Y. Acad. Sci. 127, 84–99 (1965).

    Google Scholar 

  • Meek, W. J.: Structure of Limulus heart muscle. J. Morph. 20, 403–412 (1909).

    Google Scholar 

  • North, R. J.: The fine structure of the myofibers in the heart of the snail Helix aspersa. J. Ultrastruct. Res. 8, 206–218 (1963).

    Google Scholar 

  • Parnas, I., Abbott, B. C., Lang, F.: Electrophysiological properties of Limulus heart and effect of drugs. Amer. J. Physiol. 217, 1814–1822 (1969).

    Google Scholar 

  • Peachey, L. D., Huxley, A. F.: Transverse tubules in crab muscle. J. Cell Biol. 23, 70A-71A (1964).

    Google Scholar 

  • Prosser, C. L.: An analysis of the action of acetylcholine on hearts, particularly in arthropods. Biol. Bull. 83, 145–164 (1942).

    Google Scholar 

  • Revel, J. P., Karnovsky, M. J.: Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 33, C7-C12 (1967).

    Google Scholar 

  • Rulon, R., Hermsmeyer, K., Sperelakis, N.: Regenerative action potentials induced in the neurogenic heart of Limulus polyphemus. Comp. Biochem. Physiol. 38A, 555–578 (1971).

    Google Scholar 

  • Sanger, J. W., McCann, F. V.: Ultrastructure of the myocardium of the moth, Hyalophora cecropia. J. Insect Physiol. 14, 1105–1111 (1968).

    Google Scholar 

  • Smith, J. R.: Observations of the ultrastructure of the myocardium of the common lobster (Homarus americanus), especially of the myofibrils. Anat. Rec. 145, 391–400 (1963).

    Google Scholar 

  • Sommer, J. R., Johnson, E. A.: Cardiac Muscle. A comparative ultrastructural study with special reference to frog and chicken hearts. Z. Zellforsch. 98, 437–468 (1969).

    Google Scholar 

  • Sperelakis, N.: Lack of electrical coupling between contiguous myocardial cells in vertebrate hearts. In: Comparative physiology of the heart, current trends, ed. by F. V. McCann. Experientia (Basel), Suppl. 15, 135–165 (1969).

  • —, Mayer, G., Macdonald, R.: Velocity of propagation in vertebrate cardiac muscles as functions of tonicity and [K+]0. Amer. J. Physiol. 219, 952–963 (1970).

    Google Scholar 

  • —, Rubio R., Redick, J.: Sharp discontinuity in sarcomere lengths across intercalated disks of fibrillating cat hearts. J. Ultrastruct. Res. 30, 503–532 (1970).

    Google Scholar 

  • —, Schneider, M. F.: Membrane ion conductances of frog sartorius fibers as a function of tonicity. Amer. J. Physiol. 215, 723–729 (1968).

    Google Scholar 

  • Spiro, D.: The fine structure and contractile mechanism of heart muscle. In: The myocardial cell, ed. by S. A. Briller and H. L. Conn, Jr., p. 13–61. Philadelphia: University of Pennsylvania Press, 1966.

    Google Scholar 

  • Staley, N. A., Benson, E. S.: The ultrastructure of frog ventricular muscle and its relationship to mechanisms of excitation-contraction coupling. J. Cell Biol. 38, 99–114 (1968).

    Google Scholar 

  • Stein, R. J., Richter, W. R., Zussman, R. A., Brynjolfson, G.: Ultrastructural characterization of Daphnia heart muscle. J. Cell Biol. 29, 168–170 (1966).

    Google Scholar 

  • Villafranca, G. W. de, Philpott, D. E.: The ultrastructure of striated muscle from Limulus polyphemus. J. Ultrastruct. Res. 5, 151–165 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from the American Heart Association and from the Public Health Service (HE-11155 and HE-05815). I thank Mrs. Jan Redick for expert technical assistance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sperelakis, N. Ultrastructure of the neurogenic heart of Limulus polyphemus . Z. Zellforsch. 116, 443–463 (1971). https://doi.org/10.1007/BF00335051

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00335051

Key-Words

Navigation