Skip to main content
Log in

Effect of colchicine on the fine structure of the neuromuscular junction

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Repeated injections of colchicine into the forearms of normal adult newts led to the disappearance of microtubules within some nerves and a concomitant loss of specialized morphological features at the neuromuscular junction. Within 2 weeks, the postsynaptic folds decreased in height and number, became flattened and eventually disappeared. In addition, nerve terminals in drug-treated animals became separated from the muscle surface and were highly congested with masses of synaptic vesicles. The present findings show that colchicine has an effect on the structural integrity of the neuromuscular junction. These effects could be direct; secondary to retraction of the nerve from the muscle surface; or the result of interference with the proper transport and/or release of neurotrophic substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banks, P., Mayor, D., Mitchell, M., Tomlinson, D.: Studies on the translocation of noradrenaline-containing vesicles in post-ganglionic sympathetic neuronesin vitro. Inhibition of movement by colchicine and vinblastine and evidence for the involvement of axonal microtubules. J. Physiol. (Lond.)216, 625–639 (1971).

    Google Scholar 

  • Borisy, G. G., Taylor, E. W.: The mechanism of action of colchicine. Binding of colchicine-3H to cellular protein. J. Cell Biol.34, 525–533 (1967).

    Google Scholar 

  • Dahlström, A.: Effect of colchicine on transport of amine storage granules in sympathetic nerves of rat. Europ. J. Pharmacol.5, 111–113 (1968).

    Google Scholar 

  • Dahlström, A., Häggendal, J.: Studies on the transport and life-span of amine storage granules in a peripheral adrenergic neuron system. Acta physiol. scand.67, 278–288 (1966).

    Google Scholar 

  • Daniels, M. P.: Colchicine inhibition of nerve fiber formation in vitro. J. Cell Biol.53, 164–176 (1972).

    Google Scholar 

  • Drachman, D. B.: The role of acetylcholine as a trophic neuromuscular transmitter. In: Growth of the nervous system (G. E. W. Wolstenholme and M. O'Connor, eds.), p. 251–273. Boston: Little, Brown & Co. 1968.

    Google Scholar 

  • Droz, B., Leblond, C. P.: Axonal migration of proteins in the central nervous system and peripheral nerves as shown by radioautography. J. comp. Neurol.121, 325–345 (1963).

    Google Scholar 

  • Fernandez, H. L., Huneeus, F. C., Davison, P. F.: Studies on the mechanism of axoplasmic transport in the crayfish cord. J. Neurobiol.1, 395–409 (1970).

    Google Scholar 

  • Gillespie, E.: Colchicine binding in tissue slices. Decrease by calcium and biphasic effect of adenosine-3′,5′-monophosphate. J. Cell Biol.50, 544–549 (1971).

    Google Scholar 

  • Gillespie, E., Levine, R. J., Malawista, S. E.: Histamine release from rat peritoneal mast cells: Inhibition by colchicine and potentiation by deuterium oxide. J. Pharmacol. exp. Ther.164, 158–165 (1968).

    Google Scholar 

  • Guth, L.: “Trophic” influences of nerve on muscle. Physiol. Rev.48, 645–687 (1968).

    Google Scholar 

  • Gutmann, E., Hník, P.: Denervation studies in research of neurotrophic relationships. In: The denervated muscle (E. Gutmann, ed.), p. 13–56. Prague: Publishing House of the Czechoslovak Academy of Science 1962.

    Google Scholar 

  • Hökfelt, T., Dahlström, A.: Effects of two mitosis inhibitors (colchicine and vinblastine) on the distribution and axonal transport or noradrenaline storage particles, studied by fluorescence and electron microscopy. Z. Zellforsch.119, 460–482 (1971).

    Google Scholar 

  • James, K. A. C., Bray, J. J., Morgan, I. G., Austin, L.: The effect of colchicine on the transport of axonal protein in the chicken. Biochemical J.117, 767–771 (1970).

    Google Scholar 

  • Karlsson, J. O., Hansson, H.-A., Sjöstrand, J.: Effect of colchicine on axonal transport and morphology of retinal ganglion cells. Z. Zellforsch.115, 265–283 (1971).

    Google Scholar 

  • Karlsson, J. O., Sjöstrand, J.: The effect of colchicine on the axonal transport of protein in the optic nerve and tract of the rabbit. Brain Res.13, 617–619 (1969).

    Google Scholar 

  • Korr, I. M., Wilkinson, P. N., Chornock, F. W.: Axonal delivery of neuroplasmic components to muscle cells. Science155, 342–345 (1967).

    Google Scholar 

  • Kreutzberg, G. W.: Neuronal dynamics and axonal flow. IV. Blockage of intra-axonal enzyme transport by colchicine. Proc. nat. Acad. Sci. (Wash.)62, 722–728 (1969).

    Google Scholar 

  • Lacy, P. E., Howell, S. L., Young, D. A., Fink, C. J.: New hypothesis of insulin secretion. Nature (Lond.)219, 1177–1179 (1968).

    Google Scholar 

  • Lasek, R. J.: Axoplasmic transport of labeled proteins in rat ventral motorneurons. Exp. Neurol.21, 41–51 (1968).

    Google Scholar 

  • Lentz, T. L.: Fine structure of nerves in the regenerating limb of the newtTriturus. Amer. J. Anat.121, 647–670 (1967).

    Google Scholar 

  • Lentz, T. L.: Development of the neuromuscular junction. I. Cytological and cytochemical studies on the neuromuscular junction of differentiating muscle in the regenerating limb of the newtTriturus. J. Cell Biol.42, 431–443 (1969).

    Google Scholar 

  • Lentz, T. L.: Development of the neuromuscular junction. II. Cytological and cytochemical studies on the neuromuscular junction of dedifferentiating muscle in the regenerating limb of the newtTriturus. J. Cell Biol.47, 423–436 (1970).

    Google Scholar 

  • Lentz, T. L.: Development of the neuromuscular junction. III. Degeneration of motor end plates following denervation and maintenance in vitro by nerve explants. J. Cell Biol.,55, 93–103 (1972).

    Google Scholar 

  • Livett, B. G., Geffen, L. B., Austin, L.: Proximo-distal transport of [14C] noradrenaline and protein in sympathetic nerves. J. Neurochem.15, 931–939 (1968).

    Google Scholar 

  • Lømo, T., Rosenthal, J.: Control of ACh sensitivity by muscle activity in the rat. J. Physiol. (Lond.)221, 493–513 (1972).

    Google Scholar 

  • Markand, O. N., D'Agostino, A. N.: Ultrastructural changes in skeletal muscle induced by colchicine. Arch. Neurol. (Chic.)24, 72–82 (1971).

    Google Scholar 

  • Miledi, R., Slater, C. R.: On the degeneration of rat neuromuscular junctions after nerve section. J. Physiol. (Lond.)207, 507–528 (1970).

    Google Scholar 

  • Ochs, S.: Fast axoplasmic transport of proteins and polypeptides in mammalian nerve fibers. In: Protein metabolism of the nervous system (A. Lajtha, ed.), p. 291–302. New York: Plenum Press 1970.

    Google Scholar 

  • Perísíc, M., Cuénod, M.: Synaptic transmission depressed by colchicine blockade of axoplasmic flow. Science175, 1140–1142 (1972).

    Google Scholar 

  • Poisner, A. M., Bernstein, J.: A possible role of microtubules in catecholamine release from the adrenal medulla: Effect of colchicine, vinca alkaloids and deuterium oxide. J. Pharmacol. exp. Ther.177, 102–108 (1971).

    Google Scholar 

  • Schlaepfer, W. W.: Vincristine-induced axonal alterations in rat peripheral nerve. J. Neuropath. exp. Neurol.30, 488–505 (1971).

    Google Scholar 

  • Schmitt, F. O., Samson, F. E.: Neuronal fibrous proteins. Neurosci. Res. Progr. Bull.6, 113–219 (1968).

    Google Scholar 

  • Shelanski, M. L., Taylor, E. W.: Isolation of a protein subunit from microtubules. J. Cell Biol.34, 549–554 (1967).

    Google Scholar 

  • Singer, M.: A theory of the trophic nervous control of amphibian limb regeneration, including a re-evaluation of quantitative nerve requirements. In: Regeneration in animals and related problems (V. Kiortsis and H. A. L. Trampusch, eds.), p. 20–30. Amsterdam: North Holland 1965.

    Google Scholar 

  • Singer, M., Steinberg, M. C.: Wallerian degeneration: A re-evaluation based on transected and colchicine poisoned nerves in the amphibian,Triturus. Amer. J. Anat.133, 51–84 (1972).

    Google Scholar 

  • Smith, D. S., Järlfors, U., Beránek, R.: The organization of synaptic axoplasm in the lamprey (Petromyzon marinus) central nervous system. J. Cell Biol.46, 199–219 (1970).

    Google Scholar 

  • Weiss, P., Pillai, A.: Convection and fate of mitochondria in nerve fibers: Axonal flow as vehicle. Proc. nat. Acad. Sci. (Wash.)54, 48–56 (1965).

    Google Scholar 

  • Wessells, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Luduena, M. A., Taylor, E. L., Wrenn, J. T., Yamada, K. M.: Microfilaments in cellular and developmental processes. Science171, 135–143 (1971).

    Google Scholar 

  • Wisniewski, H., Shelanski, M. L., Terry, R. D.: Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cells. J. Cell Biol.38, 224–229 (1968).

    Google Scholar 

  • Yamada, K. M., Spooner, B. S., Wessells, N. K.: Axon growth: Role of microfilaments and microtubules. Proc. nat. Acad. Sci. (Wash.)66, 1206–1212 (1970).

    Google Scholar 

  • Zelená, J.: Bidirectional movement of mitochondria along axons of an isolated nerve segment. Z. Zellforsch.92, 186–196 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from the National Science Foundation (GB 20902) and from the National Institute of General Medical Sciences (TIGM-00105) and the National Cancer Institute (TICA-05055), National Institutes of Health, United States Public Health Service.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, L., Lentz, T.L. Effect of colchicine on the fine structure of the neuromuscular junction. Z.Zellforsch 135, 439–448 (1972). https://doi.org/10.1007/BF00583428

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00583428

Key words

Navigation