Skip to main content
Log in

Zur Feinstruktur des dorsalen Riesenfasersystems im Bauchmark des Regenwurms

II. Synaptische Beziehungen der proximalen Riesenfaserkollateralen

Ultrastructure of the dorsal giant fibre system in the ventral nerve cord of the earthworm

II. Synaptic connections of the proximal collaterals of the giant fibres

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The proximal collaterals of the dorsal giant fibres of the earthworm were traced through serial sections from the cell bodies to the giant axons. Their structure and synaptic connections were examined. There are chemical as well as electrical synapses. Their fine structure is compared to that of other known invertebrate and vertebrate synapses. Both giant fibre systems have efferent chemical connections with thin postsynaptic arborizations which probably belong to ventral cord motoneurons. Moreover the median giant axon is connected by an electrical synapse with the giant interneurons. The lateral giant collaterals on the contrary receive many afferences through chemical synapses which were partly identified as sensory fibers from the epidermis, multisegmental axons from the main fibre bundles or giant interneurones. Other afferences probably come from unisegmental interneurones. In addition both lateral giant axons form an electrical chiasma synapse with special membrane folds.

Zusammenfassung

Die proximalen Kollateralen der dorsalen Riesenfasern des Regenwurms wurden in Serienschnitten vom Soma bis zum Eintritt in die Riesenfaser verfolgt und im Hinblick auf ihre Feinstruktur und ihre synaptischen Kontakte Untersucht. Es finden sich sowohl chemische als auch elektrische Synapsen. Ihre Feinstruktur wird mit der bekannter Synapsen anderer Wirbellosen und Wirbeltiere verglichen. In beiden Riesenfasersystemen kommen efferente chemische Synapsen mit feinen postsynaptischen Verzweigungen vor, die anscheinend von Bauchmark-Motoneuronen stammen. Das Axon der medianen Riesenfaser weist darüber hinaus nur noch eine elektrische Synapse mit den Rieseninterneuronen auf. Demgegenüber erhalten die Kollateralen der lateralen Riesenfasern zahlreiche Afferenzen, die zum Teil als sensorische Fasern der Epidermis, multisegmentale Fasern der Hauptfaserzüge und Rieseninterneurone identifiziert werden konnten. Weitere Afferenzen stammen vermutlich von unisegmentalen Interneuronen her. Beide lateralen Riesenzellaxone bilden außerdem miteinander eine elektrische Chiasma-Synapse mit besonderen Membraneinfaltungen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Aghajanian, G. K., Bloom, F. E.: The formation of synaptic junctions in developing rat brain: a quantitative electron microscopic study. Brain Res. 6, 716–727 (1967).

    Google Scholar 

  • Barlow, J., Martin, R.: Structural identification and distribution of synaptic profiles in the Octopus brain using the zinc iodide-osmium method. Brain Res. 25, 241–253 (1971).

    Google Scholar 

  • Bennett, M. V. L., Auerbach, A. A.: Calculation of electrical coupling of cells separated by a gap. Anat. Rec. 163, 152 (1969).

    Google Scholar 

  • Bennett, M. V. L., Pappas, G. D., Giménez, M., Nakajima, Y.: Physiology and ultrastructure of electrotonic junctions. IV. Medullary electromotor nuclei in gymnotid fish. J. Neurophysiol. 30, 236–300 (1967).

    Google Scholar 

  • Bloom, F. E.: Correlating structure and function of synaptic structure. In: The neurosciences, second study program. New York: Rockefeller University Press 1970.

    Google Scholar 

  • Bloom, F. E., Aghajanian, G. K.: Fine structural and cytochemical analysis of the staining of synaptic junctions with phosphotungstic acid. J. Ultrastruct. Res. 22, 361–375 (1968).

    Google Scholar 

  • Brightman, M. W., Reese, T. S.: Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648–677 (1969).

    Google Scholar 

  • Bullock, T. H.: Functional organization of the giant fiber system of Lumbricus. J. Neurophysiol. 8, 55–71 (1945).

    Google Scholar 

  • Bullock, T. H., Horridge, G. A.: Structure and function in the nervous system of invertebrates, vol. I. San Francisco-London: Freeman 1965.

    Google Scholar 

  • Coggeshall, R. E.: A fine structural analysis of the ventral nerve cord and associated sheath of Lumbricus terrestris L. J. comp. Neurol. 125, 393–438 (1965).

    Google Scholar 

  • Coggeshall, R. E., Fawcett, D. W.: The fine structure of the central nervous system of the leech Hirudo medicinalis. J. Neurophysiol. 27, 229–289 (1964).

    Google Scholar 

  • Davis, W. J.: Motoneuron morphology and synaptic contacts: Determination by intracellular dye injection. Science 168, 1358–1360 (1970).

    Google Scholar 

  • Düring, M. von: Über die Feinstruktur der motorischen Endplatte von höheren Wirbeltieren. Z. Zellforsch. 81, 74–90 (1967).

    Google Scholar 

  • Eccles, J. C., Jaeger, J. C.: The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs. Proc. roy. Soc. B 148, 38–56 (1968).

    Google Scholar 

  • Friedländer, B.: Beiträge zur Kenntnis des Centralnervensystems von Lumbricus. Z. wiss. Zool. 47, 47–84 (1888).

    Google Scholar 

  • Furshpan, E. J., Potter, D. D.: Transmission at the giant motor synapses of the crayfish. J. Physiol. (Lond.) 145, 289–325 (1959).

    Google Scholar 

  • Gervasio, A., Martin, R., Miralto, A.: Fine structure of synaptic contacts in the first order giant fibre system of the squid. Z. Zellforsch. 112, 85–96 (1971).

    Google Scholar 

  • Gray, E. G., Guillery, R. W.: Synaptic morphology in the normal and degenerating nervous system. Int. Rev. Cytol. 19, 11–182 (1966).

    Google Scholar 

  • Graziadei, P.: Electron microscope observations of some peripheral synapses in the sensory pathway of the sucker of Octopus vulgaris. Z. Zellforsch. 65, 363–379 (1965).

    Google Scholar 

  • Grinell, A. D.: A study of the interaction between motoneurones in the frog spinal cord. J. Physiol. (Lond.) 182, 612–648 (1966).

    Google Scholar 

  • Günther, J.: Zur Struktur und Funktion der Riesenfaser-Systeme beim Regenwurm Lumbricus terrestris L., mit Hinweisen auf die nervöse Organisation des Bauchmarks. Dissertation Göttingen 1969.

    Google Scholar 

  • Günther, J.: Der cytologische Aufbau der dorsalen Riesenfasern von Lumbricus terrestris L. Z. wiss. Zool. 183, 51–70 (1971a).

    Google Scholar 

  • Günther, J.: Mikroanatomie des Bauchmarks von Lumbricus terrestris L. (Annelida, Oligochaeta). Z. Morph. Tiere 70, 141–182 (1971b).

    Google Scholar 

  • Günther, J.: Giant motor neurons in the earthworm. Comp. Biochem. Physiol. 42A, 967–973 (1972).

    Google Scholar 

  • Günther, J., Walther, J. B.: Funktionelle Anatomie der dorsalen Riesenfaser-Systeme von Lumbricus terrestris L. (Annelida, Oligochaeta). Z. Morph. Tiere 70, 253–280 (1971).

    Google Scholar 

  • Hama, K.: Some observations on the fine structure of the giant nerve fibres of the earthworm, Eisenia foetida. J. biophys. biochem. Cytol. 6, 61–66 (1959).

    Google Scholar 

  • Hoy, R. R.: Degeneration and regeneration in abdominal flexor motor neurones in the crayfish. J. exp. Zool. 172, 219–232 (1970).

    Google Scholar 

  • Jones, D. G.: The fine structure of the synaptic membrane adhesions on Octopus synaptosomes. Z. Zellforsch. 88, 457–469 (1968).

    Google Scholar 

  • Katz, B.: Nerve, muscle and synapse. New York-London: McGraw-Hill 1966.

    Google Scholar 

  • Knapp, M. F., Mill, P. J.: The fine structure of ciliated sensory cells in the epidermis of the earthworm Lumbricus terrestris L. Tissue and Cell 3, 623–636 (1971).

    Google Scholar 

  • Krasne, F. B., Stirling, Ch. A.: Synapses of crayfish abdominal ganglia with special attention to afferent and efferent connections of the lateral giant fibers. Z. Zellforsch. 127, 526–544 (1972).

    Google Scholar 

  • Kusano, K., La Vail, M. M.: Impulse conduction in the medullated giant fiber with special reference to the structure of functionally excitable areas. J. comp. Neurol. 142, 481–494 (1971).

    Google Scholar 

  • Lamparter, H. E., Steiger, U., Sandri, C., Akert, K.: Zum Feinbau der Synapsen im Zentralnervensystem der Insekten. Z. Zellforsch. 99, 435–442 (1969).

    Google Scholar 

  • Lasek, R. J.: Protein transport in neurons. Int. Rev. Neurobiol. 13, 289–324 (1970).

    Google Scholar 

  • Liebermann, A. R.: Microtubule-associated smooth endoplasmic reticulum in the frog's brain. Z. Zellforsch. 116, 564–577 (1971).

    Google Scholar 

  • Lorenzo, A. J. D. de, Brzin, M., Dettbarn, W. D.: Fine structure and organization of nerve fibers and giant axons in Homarus americanus. J. Ultrastruct. Res. 24, 367–384 (1968).

    Google Scholar 

  • Martin, A. R., Pilar G.: Dual mode of synaptic transmission in the avian ciliary ganglion. J. Physiol. (Lond.) 168, 443–463 (1963).

    Google Scholar 

  • Mulloney, B.: Structure of the giant fibres of earthworms. Science 168, 994–996 (1970).

    Google Scholar 

  • Myhrberg, H. E.: Ultrastructural localization of monoamines in the central nervous system of Lumbricus terrestris L. with remarks on neurosecretory vesicles. Z. Zellforsch. 126, 348–362 (1972).

    Google Scholar 

  • Myhrberg, H. E.: Ultrastructural localization of monoamines in the epidermis of Lumbricus terrestris L. Z. Zellforsch. 117, 139–154 (1971).

    Google Scholar 

  • Nevmyvaka, G. A.: The structure of nerve fibers in Allolobophora. C. R. Acad. Sci. URSS (Dokl. Akad. Nauk SSSR) 70, 507–510 (1950).

    Google Scholar 

  • Nordlander, R. H., Singer, M.: Electron microscopy of severed motor fibers in the crayfish. Z. Zellforsch. 126, 157–181 (1972).

    Google Scholar 

  • Pappas, G. D. Asada, Y., Bennett, M. V. L.: Morphological correlates of increased coupling resistance at an electrotonic synapse. J. Cell Biol. 49, 159–188 (1971).

    Google Scholar 

  • Pellegrino de Iraldi, A., de Robertis, E.: The neurotubular system of the axon and the origin of granulated and nongranulated vesicles in regenerating nerves. Z. Zellforsch. 87, 330–344 (1968).

    Google Scholar 

  • Peracchia, C.: A system of parallel septa in crayfish nerve fibers. J. Cell Biol. 44, 125–133 (1970).

    Google Scholar 

  • Peracchia, C., Robertson, J. D.: Increase in osmiophilia of axonal membranes of crayfish as a result of electrical stimulation, asphyxia, or treatment with reducing agents. J. Cell Biol. 51, 223–239 (1971).

    Google Scholar 

  • Pfenninger, K., Sandri, C., Akert, K., Eugster, C. H.: Contribution to the problem of structural organization of the presynaptic area. Brain Res. 12, 10–18 (1969).

    Google Scholar 

  • Robertis, E. De, Bennett, H. S.: Some features of the submicroscopic morphology of synapses in frog and earthworm. J. biophys. biochem. Cytol. 1, 47–58 (1955).

    Google Scholar 

  • Roberts, A.: Recurrent inhibition in the giant-fibre system of the crayfish and its effect on the excitability of the escape response. J. exp. Biol. 48, 545–567 (1968).

    Google Scholar 

  • Rosenbluth, J.: Subsurface cisterns and their relationship to the neuronal plasma membrane. J. Cell Biol. 13, 405–421 (1962).

    Google Scholar 

  • Rushton, W. A. H.: Reflex conduction in the giant fibres of the earthworm. Proc. roy. Soc. B 133, 109–120 (1946).

    Google Scholar 

  • Sandborn, E. B.: Electron microscopy of the neuron membrane systems and filaments. Canad. J. Physiol. Pharmacol. 44, 329–339 (1966).

    Google Scholar 

  • Schürmann, F. W.: Über die Struktur der Pilzkörper des Insektenhirns. I. Synapsen im Pedunculus. Z. Zellforsch. 103, 365–381 (1970).

    Google Scholar 

  • Schürmann, F. W.: Synaptic contacts of association fibers in the brain of the bee. Brain Res. 26, 169–176 (1971).

    Google Scholar 

  • Schürmann, F. W., Günther, J.: Elektronenmikroskopische Untersuchungen am dorsalen Riesenfasersystem im Bauchmark des Regenwurms (Lumbricus terrestris L.) I. Die Somata der Riesenfasern. Z. Zellforsch. (im Druck 1973).

  • Steiger, U.: Über den Feinbau des Neuropils im Corpus pedunculatum der Waldameise. Elektronenoptische Untersuchungen. Z. Zellforsch. 81, 511–536 (1967).

    Google Scholar 

  • Stensaas, L. J., Stensaas, S. S.: Light and electron microscopy of motoneurons and neuropile in the amphibian spinal cord. Brain Res. 31, 67–84 (1971).

    Google Scholar 

  • Takahashi, K., Hama, K.: Some observations on the fine structure of the synaptic area in the ciliary ganglion of the chick. Z. Zellforsch. 67, 174–184 (1965).

    Google Scholar 

  • Wilson, D. M.: The connections between the lateral giant fibers of earthworms. Comp. Biochem. Physiol. 3, 274–284 (1961).

    Google Scholar 

  • Wine, J. J., Krasne, F. B.: The organization of escape behaviour in the crayfish. J. exp. Biol. 56, 1–18 (1972).

    Google Scholar 

  • Zucker, R. S., Kennedy, D., Selverston, A. I.: Neuronal circuit mediating escape responses in crayfish. Science 173, 645–650 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit Unterstützung durch die Deutsche Forschungsgemeinschaft Gu 117/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Günther, J., Schürmann, F.W. Zur Feinstruktur des dorsalen Riesenfasersystems im Bauchmark des Regenwurms. Z.Zellforsch 139, 369–396 (1973). https://doi.org/10.1007/BF00306592

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00306592

Key words

Navigation