Skip to main content
Log in

The morphology of the oval nuclei of neonatal Torpedo marmorata

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The morphology of the oval nucleus of neonatal Torpedo marmorata is described at the light and electron microscopic level of examination. The nucleus is unique relative to other central electromotor centers of electric fish so far described being bilaterally symmetrical, composed of two nerve cell types, and possessing no gap junctions between neurons and their processes. This particular structural plan presents difficulties in accounting for presumed synchronous discharge since it has been strongly argued that electrotonic coupling by means of gap junctions is the primary process by which synchronization is accomplished. Close membrane apposition and dendritic bundling, common features within the nucleus, are discussed as possible alternative structural correlates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belbenoit, P. (Personal communication) (1976)

  • Bennett, M.V.L.: Comparative physiology: electric organs. Ann. Rev. Physiol. 32, 471–528 (1970)

    Google Scholar 

  • Bennett, M.V.L., Auerbach, A.A.: Calculation of electrical coupling of cells separated by a gap. Anat. Rec. 163, 152 (Abstr.) (1969)

    Google Scholar 

  • Bennett, M.V.L., Nakajima, Y., Pappas, G.D.: Physiology and ultrastructure of electrotonic junctions. III. Giant electromotor neurons of Malapterurus electricus. J. Neurophysiol. 30, 209–235 (1967)

    Google Scholar 

  • Bennett, M.V.L., Pappas, G.D., Aljure, E., Nakajima, Y.: Physiology and ultrastructure of electrotonic junctions. II. Spinal and medullary electromotor nuclei in mormyrid fish. J. Neurophysiol. 30, 180–208 (1967)

    Google Scholar 

  • Bennett, M.V.L., Pappas, G.D., Jiménez, M., Nakajima, Y.: Physiology and ultrastructure of electrotonic junctions. IV. Medullary electromotor nuclei in gymnotid fish. J. Neurophysiol. 30, 236–300 (1967)

    Google Scholar 

  • Fessard, A.: La synchronisation des activités élémentaires dans les organes des poissons électriques. In: Bioelectrogenesis (Chagus and de Carvalho, eds.), 202–211. Amsterdam: Elsevier Publ. 1961

    Google Scholar 

  • Fessard, A., Szabo, Th.: Sur l'organisation anatomofonctionelle des lobes électriques de la Torpille. J. de Physiologie 45, 114–117 (1953)

    Google Scholar 

  • Fessard, A., Szabo, Th.: Etude microphysiologique du neurone intermediaire d'une chaine reflexe disynaptique. C.R. Soc. Biol. (Paris) 148, 281–284 (1954)

    Google Scholar 

  • Frontera, J.C.: Improved Golgi-type impregnation of nerve cells. Anat. Rec. 148, 371–372 (1964)

    Google Scholar 

  • Grinnell, A.D.: A study of the interaction between motoneurons in the frog spinal cord. J. Physiol. (Lond.) 182, 612–648 (1966)

    Google Scholar 

  • Grundfest, H.: Synaptic and ephaptic transmission. In: The structure and function of nervous tissue (Bourne, G.H., ed.), Vol. II, pp. 463–491. London-New York: Academic Press 1969

    Google Scholar 

  • Krenz, W.D.: (Personal communication) (1976)

  • Leontovich, T.A.: Quantitative analysis and classification of subcortical forebrain neurons. Golgi Cent. Symp. Proc. (Santini, M., ed.), pp. 101–122. New York: Raven Press 1975

    Google Scholar 

  • Magherini, P.C., Prect, W., Schwindt, P.C.: Evidence for electrotonic coupling between frog motoneurons in the in situ spinal cord. J. Neurophys. 39, 474–483 (1976)

    Google Scholar 

  • Matthews, M.A., Willis, W.D., Williams, V.: Dendrite bundles in lamina IX of cat spinal cord: A possible source for electrical interaction between motoneurons. Anat. Rec. 171, 313–328 (1971)

    Google Scholar 

  • Meszler, R.M., Pappas, G.D., Bennett, M.V.L.: Morphological demonstration of electrotonic coupling of neurons by way of presynaptic fibres. Brain Res. 36, 412–415 (1972)

    Google Scholar 

  • Meszler, R.M., Pappas, G.D., Bennett, M.V.L.: Morphology of the electromotor system in the spinal cord of the electric eel, Electrophorus electricus. J. Neurocytol. 3, 251–261 (1974)

    Google Scholar 

  • Nakajima, Y.: Fine structure of the medullary command nucleus of the electric organ of the skate. Tissue and Cell 2, 47–58 (1970)

    Google Scholar 

  • Nelson, P.G.: Interaction between spinal motoneurons of the cat. J. Neurophysiol. 29, 275–287 (1966)

    Google Scholar 

  • Pappas, G.D., Waxman, St.G., Bennett, M.V.L.: Morphology of spinal electromotor neurons and presynaptic coupling in the gymnotid Sternarchus albifrons. J. Neurocytol. 4, 469–478 (1975)

    Google Scholar 

  • Ramón-Moliner, E.: A chlorate-formaldehyde modification of the Golgi method. Stain Technol. 32, 105–116 (1957)

    Google Scholar 

  • Ramón-Moliner, E.: The morphology of dendrites. In: The structure and function of nervous tissue (Bourne, G.H., ed.), Vol. I, pp. 205–267. London-New York: Academic Press 1968

    Google Scholar 

  • Ramón-Moliner, E.: The leptodendritic neuron: its distribution and significance. Ann. N.Y. Acad. Sci. 167, 65–70 (1969)

    Google Scholar 

  • Ramón-Moliner, E.: Specialized and generalized dendritic patterns. Golgi Cent. Symp. Proceed. (Santini, M., ed.), pp. 87–100. New York: Raven Press 1975

    Google Scholar 

  • Reynolds, E.S.: The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)

    Google Scholar 

  • Roberts, B.E., Ryan, K.P.: Cytological features of the giant neurons controlling electric discharge in the ray, Torpedo. J. Mar. Biol. Ass. U.K. 55, 123–131 (1975)

    Google Scholar 

  • Scheibel, M.E., Scheibel, A.B.: Dendrites as neuronal couplers: the dendrite bundle. Golgi Cent. Symp. Proceed. (Santini, M., ed), pp. 347–354. New York: Raven Press 1975

    Google Scholar 

  • Sotelo, C.: Morphological correlates of electrotonic coupling between neurons in mammalian nervous system. Golgi Cent. Symp. Proceed. (Santini, M., ed.), pp. 355–365. New York: Raven Press 1975

    Google Scholar 

  • Sotelo, C., Taxi, J.: Ultrastructural aspects of electrotonic junctions in the spinal cord of the frog. Brain Res. 17, 137–141 (1970)

    Google Scholar 

  • Stensaas, E.J., Stensaas, S.S.: Light and electron microscopy of motoneurons and neuropile in the amphibian spinal cord. Brain Res. 31, 67–84 (1971)

    Google Scholar 

  • Szabo, Th.: Anatomo-physiologie des centres nerveux spécifiques de quelques organes électriques. In: Bioelectrogenesis (Chagus, de Carvalho, eds.), pp. 185–201. Amsterdam: Elsevier Publ. 1961

    Google Scholar 

  • Waxman, S.G.: Integrative properties and design principles of axons. Int. Rev. Neurobiol. 18, 1–40 (1975)

    Google Scholar 

  • Zeiglgänsberger, W., Reiter, Ch.: Interneuronal movement of procion yellow in cat spinal neurones. Exp. Brain Res. 20, 527–530 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, G.Q. The morphology of the oval nuclei of neonatal Torpedo marmorata . Cell Tissue Res. 178, 155–167 (1977). https://doi.org/10.1007/BF00219043

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00219043

Key words

Navigation