Skip to main content
Log in

Spatial organization and fine structure of the cortical filament layer in normal locomoting Amoeba proteus

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The fine structural organization of a cortical filament layer in normal locomoting Amoeba proteus was demonstrated using improved fixation and embedding techniques. Best results were obtained after application of PIPES-buffered glutaraldehyde in connection with substances known to prevent the depolymerization of F-actin, followed by careful dehydration and freeze-substitution.

The filament layer is continuous along the entire surface; it exhibits a varying thickness depending on the cell polarity, measuring several nm in advancing regions and 0.5–1 μm in retracting ones. Two different types of filaments are responsible for the construction of the layer: randomly distributed thin (actin) filaments forming an unordered meshwork beneath the plasma membrane, and thick (myosin) filaments mostly restricted to the uroid region in close association with F-actin.

The cortical filament layer generates the motive force for amoeboid movement by contraction at posterior cell regions and induces a pressure flow that continues between the uroid with a high hydrostatic pressure and advancing pseudopodia with a low one. The local destabilization of the cell surface as a precondition for the formation of pseudopodia is enabled by the detachment of the cortical filament layer from the plasma membrane. This results in morphological changes by the active separation of peripheral hyaloplasmic and central granuloplasmic regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen RD (1961) A new theory of ameboid movement and protoplasmic streaming. Exp Cell Res 8:17–31

    Google Scholar 

  • Allen RD, Allen NS (1978) Cytoplasmic streaming in amoeboid movement. Ann Rev Biophys Bioeng 7:469–495

    Google Scholar 

  • Allen RD, Cooledge JW, Hall PJ (1960) Streaming in cytoplasm dissociated from the giant ameba Chaos chaos. Nature 187:896–899

    Google Scholar 

  • Clarke M, Spudich JA (1977) Non-muscle contractile proteins: the role of actin and myosin in cell motility and shape determination. Ann Rev Biochem 46:797–820

    Google Scholar 

  • Danneel S (1964) Identifizierung der kontraktilen Elemente im Cytoplasma von Amoeba proteus. Naturwissenschaften 51:368–369

    Google Scholar 

  • D'Haese J, Komnick H (1972a) Fine structure and contraction of isolated muscle actomyosin. I. Evidence for a sliding mechanism by means of oligomeric myosin. Z Zellforsch 134:411–426

    Google Scholar 

  • D'Haese J, Komnick H (1972b) Fine structure and contraction of isolated muscle actomyosin. II. Formation of myosin filaments and their effect on contraction. Z Zellforsch 134:427–434

    Google Scholar 

  • Gawlitta W, Hinssen H, Stockem W (1980b) The influence of an actin-modulating protein (AM-protein) from Physarum polycephalum on the cell motility of Amoeba proteus. Eur J Cell Biol 23:43–52

    Google Scholar 

  • Gawlitta W, Stockem W, Wehland J, Weber K (1980a) Organization and spatial arrangement of fluorescein-labelled native actin microinjected into normal locomoting and experimentally influenced Amoeba proteus. Cell Tissue Res 206:181–191

    Google Scholar 

  • Gawlitta W, Stockem W, Weber W (1981) Visualization of actin polymerization and depolymerization cycles during polyamine-induced cytokinesis in living Amoeba proteus. Cell Tissue Res 215:249–261

    Google Scholar 

  • Gicquaud C, Gruda J, Pollender JM (1980) La phalloidine protège la F-actine contre les effets destructeurs de l'acide osmique et du permanganate. Eur J Cell Biol 20:234–239

    Google Scholar 

  • Goldman R, Pollard T, Rosenbaum J (eds) (1976) Cell motility, Books A-C, Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Grebecka L, Hrebenda B (1979) Topography of cortical layer in Amoeba proteus as related to the dynamic morphology of moving cell. Acta Protozool 18:481–490

    MATH  Google Scholar 

  • Grebecki A (1979) Organization of motory functions in Amoeba and in slime mould plasmodia. Acta Protozool 18:43–47

    Google Scholar 

  • Grebecki A, Grebecka L (1978) Morphodynamic types of Amoeba proteus: A terminological proposal. Protistologica 14:349–358

    Google Scholar 

  • Gröschel-Stewart U (1980) Immunochemistry of cytoplasmic contractile proteins. Int Rev Cytol 65:193–253

    Google Scholar 

  • Haberey M (1973) Räumliche Anordnung von Plasmafilamenten bei Thecamoeba sphaeronucleolus. Cytobiologie 8:61–75

    Google Scholar 

  • Haberey M, Stockem W (1971) Amoeba proteus: Morphologie, Zucht und Verhalten. Mikrokosmos 60:33–42

    Google Scholar 

  • Haberey M, Wohlfarth-Bottermann KE, Stockem W (1969) Pinocytose und Bewegung von Amoeben. VI. Mitteilung: Kinematographische Untersuchungen über das Bewegungsverhalten der Zelloberfläche von A. proteus. Cytobiologie 1:70–84

    Google Scholar 

  • Hauser M (1978) Demonstration of membrane-associated and oriented microfilaments in Amoeba proteus by means of a Schiff base/glutaraldehyde fixative. Cytobiologie 18:95–106

    Google Scholar 

  • Hellewell SB, Taylor DL (1979) The contractile basis of ameboid movement. VI. The solation- contraction coupling hypothesis. J Cell Biol 83:633–648

    Google Scholar 

  • Hinssen H, D'Haese J (1976) Synthetic fibrils from Physarum actomyosin-self assembly, organization and contraction. Cytobiologie 13:132–157

    Google Scholar 

  • Inoué S, Stephens RE (1975) Molecules and cell movement. Raven Press, New York

    Google Scholar 

  • Isenberg G, Wohlfarth-Bottermann KE (1976) Transformation of cytoplasmic actin. Importance for the organization of the contractile gel reticulum and the contraction-relaxation cycle of cytoplasmic actomyosin. Cell Tissue Res 173:495–528

    Google Scholar 

  • Klein HP, Stockem W (1979) Pinocytosis and locomotion of Amoebae. XII. Dynamics and motive force generation during induced pinocytosis in A. proteus. Cell Tissue Res 197:263–279

    Google Scholar 

  • Komnick H, Wohlfarth-Bottermann KE (1965) Das Grundplasma und die Plasmafilamente der Amoebe Chaos chaos nach enzymatischer Behandlung der Zellmembran. Z Zellforsch 66:434–456

    Google Scholar 

  • Komnick H, Stockem W, Wohlfarth-Bottermann KE (1973) Cell motility: Mechanism in protoplasmic streaming and ameboid movement. Int Rev Cytol 34:169–249

    Google Scholar 

  • Korn ED (1978) Biochemistry of actomyosin-dependent cell motility. Proc Natl Acad Sci USA 75:588–599

    Google Scholar 

  • Korn ED, Wright PL (1973) Macromolecular composition of an amoeba plasma membrane. J Biol Chem 248:439–447

    Google Scholar 

  • Korohoda W, Stockem W (1975) On the nature of hyaline zones in the cytoplasm of Amoeba proteus. Microsc Acta 77:129–141

    Google Scholar 

  • Maupin-Szamier P, Pollard TD (1978) Actin filament destruction by osmium tetroxide. J Cell Biol 77:837–852

    Google Scholar 

  • Moore PL, Condeelis JS, Taylor DL, Allen RD (1973) A method for the morphological identification of contractile filaments in single cells. Exp Cell Res 80:493–495

    Google Scholar 

  • Nachmias VT (1964) Fibrillar structures in the cytoplasm of Chaos chaos. Cell Biol23:183–188

    Google Scholar 

  • Pollard TD (1977) Cytoplasmic contractile proteins. In: Brinkley BR, Porter KR (ed) International cell biology 1976/77. The Rockefeller University Press, New York, pp 378–387

    Google Scholar 

  • Pollard TD, Ito S (1970) Cytoplasmic filaments in Amoeba proteus. I The role of filaments in consistancy changes and movement. J Cell Biol 46:267–289

    Google Scholar 

  • Pollard TD, Korn ED (1971) Filaments of Amoeba proteus: II. Binding of heavy meromyosin by thin filaments in motile cytoplasmic extracts. J Cell Biol 48:216–219

    Google Scholar 

  • Rinaldi RA, Baker WR (1969) A sliding filament model of ameboid motion. J Theor Biol 23:463–474

    Google Scholar 

  • Rinaldi RA, Opas M, Hrebenda B (1975) Contractility of glycerinated Amoeba proteus and Chaos chaos. J Protozool 22:286–292

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    CAS  PubMed  Google Scholar 

  • Stockem W (1979) Cell surface morphology and activity in Amoeba proteus and Physarum polycephalum. Acta Protozool 18:33–41

    Google Scholar 

  • Stockem W, Wohlfarth-Bottermann KE, Haberey M (1969) Pinocytose und Bewegung von Amoeben. V. Mitteilung: Konturveränderungen und Faltungsgrad der Zelloberfläche von A. proteus. Cytobiologie 1:37–57

    Google Scholar 

  • Stockem W, Weber K, Wehland J (1978) The influence of micro-injected phalloidin on locomotion, protoplasmic streaming and cytoplasmic organization in Amoeba proteus and Physarum polycephalum. Cytobiologie 18:114–131

    Google Scholar 

  • Szamier PM, Pollard TD, Fujiwara K (1975) Tropomyosin prevents the destruction of actin filaments by osmium tetroxide. J Cell Biol 67:424a

    Google Scholar 

  • Taylor DL (1977) The contractile basis of amoeboid movement. IV The visco-elasticity and contractility of amoeba cytoplasm in vivo. Exp Cell Res 105:413–426

    Google Scholar 

  • Taylor DL, Wang YL (1978) Molecular cytochemistry: Incorporation of fluorescently labelled actin into living cells. Proc Natl Acad Sci USA 75:857–861

    Google Scholar 

  • Taylor DL, Wang YL (1980) Fluorescently labelled molecules as probes of the structure and function of living cell. Nature 284:405–410

    Google Scholar 

  • Taylor DL, Condeelis JS, Moore PL, Allen RD (1973) The contractile basis of amoeboid movement: I. The chemical control of motility in isolated cytoplasm. J Cell Biol 59:378–394

    Google Scholar 

  • Taylor DL, Moore PL, Condeelis JS, Allen RS (1976) The mechano-chemical basis of amoeboid movement. I. Ionic requirements for maintaining visco-elasticity and contractility of amoeba cytoplasm. Exp Cell Res 101:127–133

    Google Scholar 

  • Taylor DL, Condeelis JS, Rhodes JA (1977) The contractile basis of amoeboid movement. III. Structure and dynamics of motile extracts and membrane fragments from D. discoideum and A. proteus. In: Reve JP, Henning U, Fox F (eds) Cell shape and surface architecture progress in clinical and biological research, vol 17. Allan L. Liss Inc, New York, pp 581–598

    Google Scholar 

  • Taylor DL, Hellewell SB, Virgin HW, Heiple J (1979) The isolation contraction coupling hypothesis of cell movements. In: Hatano S, Ishikawa H, Sato H (eds) Cell motility: Molecules and organization. University Press, Tokyo, pp 363–377

    Google Scholar 

  • Taylor DL, Wang YL, Heiple JM (1980) Contractile basis of amoeboid movement. VII. The distribution of fluorescently labelled actin in living amebas. J Cell Biol 86:590–598

    Google Scholar 

  • Tilney LG (1977) Actin: its association with membranes and the regulation of its polymerization. In: Brinkley BR, Porter KR (eds) Int Cell Biol 1976–1977. The Rockefeller University Press, New York,pp 388–402

    Google Scholar 

  • Vasiliev JM, Gelfand IM (1977) Mechanisms of morphogenesis in cell cultures. Int Rev Cytol 50:159–274

    Google Scholar 

  • Wehland J, Stockem W, Weber K (1978) Cytoplasmic streaming in Amoeba proteus is inhibited by the actin specific drug phalloidin. Exp Cell Res 115:451–454

    Google Scholar 

  • Wehland J, Weber K, Gawlitta W, Stockem W (1979) Effects of the actin-binding protein DNAase I on cytoplasmic streaming and ultrastructure of Amoeba proteus. Cell Tissue Res 199:353–372

    Google Scholar 

  • Weihing RR (1976) Occurrence of microfilaments in nonmuscle cells and tissues. In: Altmann PC, Dittmer DS (eds) Cell biology. Fed Am Soc Exp Bio, Maryland, pp 341–356

    Google Scholar 

  • Wohlfarth-Bottermann KE (1960) Protistenstudien. X. Licht- und elektronenmikroskopische Un-tersuchungen an der Amöbe Hyalodiscus simplex n. sp. Protoplasma 52:58–107

    Google Scholar 

  • Wolf KV, Stockem W, Wohlfarth-Bottermann KE, Moor H (1981) Cytoplasmic actomyosin fibrils after preservation with high pressure freezing. Cell Tissue Res (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stockem, W., Hoffmann, HU. & Gawlitta, W. Spatial organization and fine structure of the cortical filament layer in normal locomoting Amoeba proteus . Cell Tissue Res. 221, 505–519 (1982). https://doi.org/10.1007/BF00215699

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00215699

Key words

Navigation