Skip to main content
Log in

Fully coupled solution of the equations for incompressible recirculating flows using a penalty-function finite-difference formulation

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper describes two new solution algorithms for steady recirculating flows that use a penalty formulation to eliminate the pressure from the finite difference form of the governing equations. One algorithm uses successive substitution to linearize the equations, while the other employs the Newton-Raphson linearization. In both cases, the equations are solved in a fully coupled manner using a sparse matrix form of LU decomposition. The D'Yakonov iteration is used to avoid unnecessary factorizations of the coefficient matrix, significantly improving the computational efficiency. The Newton-Raphson linearization leads to faster convergence, but the execution times of the two methods are comparable. The algorithms converge rapidly and are robust to changes in grid size and Reynolds number. In a number of laminar two-dimensional flows, the new methods proved to be two to ten times faster than some conventional iterative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

coefficient matrix

A e :

area of east control-volume face

a :

coefficient in the discretization equations

â :

coefficients in the modified momentum equations in the penalty formulation, Eqs. (13)

b :

constant term in the discretization equations

F :

symbolic form of nonlinear system of equations, F (ϕ)=A ϕ−b=0

H :

characteristic length

J :

Jacobian matrix

n :

iteration number

P :

dimensionless pressure

p :

pressure

Re:

Reynolds number

U :

dimensionless u velocity

u :

x-direction velocity

V :

dimensionless v velocity

v :

y-direction velocity

X, Y :

dimensionless coordinates, X=x/H, Y=y/H

x, y :

physical coordinates

Δx :

x-direction width of the control volume

ε:

normalized error in the unconverged solution, Eqs. (19)

Λ:

dimensionless penalty parameter, Eq. (7)

λ:

dimensional penalty parameter, Eq. (10)

μ:

viscosity

ρ:

density

References

  • Bercovier M.; Engelman M. (1979): A finite element for the numerical solution of viscous incompressible flows. J. Comp. Phys. 30, 181

    Google Scholar 

  • Braaten, M. E. (1985): Development and evaluation of iterative and direct methods for the solution of the equations governing recirculating flows. Ph.D. Thesis, Dept. of Mech. Engng., University of Minnesota

  • Concus P.; Golub G. (1973): Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations. SIAM J. Numer. Anal. 10, 1103

    Google Scholar 

  • Dahlquist G.; Bjorck A. (1974): Numerical methods. Englewood Cliffs: Prentice Hall

    Google Scholar 

  • Doormaal J. P.van; Raithby G. D. (1984): Enhancements of the SIMPLE method for predicting incompressible fluid flows Num. Heat Transfer 7, 147

    Google Scholar 

  • Eisenstat, S. C., Gursky, M. C.; Schultz, M. H; Sherman, A. H. (1977a): The Yale sparse matrix package. 1. Symmetric Problems, Res. Rept. No. 112, Yale University, Dept. of Comp. Sci.

  • Eisenstat, S. C.; Gursky, M. C.; Schultz, M. H.; Sherman, A. H. (1977b): Yale sparse matrix package. 2: The nonsymmetric codes. Res. Rept. No. 114, The Yale University, Dept. of Comp. Sci.

  • Engleman M. S.; Strang G.; Bathe K.-J. (1981): The application of quasi-Newton methods in fluid mechanics. Int. J. Num. Meth. Eng. 17, 707

    Google Scholar 

  • Harlow F. H.; Welch J. R. (1965): Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182

    Google Scholar 

  • Heinrich J. C.; Marshall R. S. (1981): Viscous incompressible flow by a penalty function finite element method. Comput. Fluids, 9, 73

    Google Scholar 

  • Hughes T. J. R.; Liu W. K.; Brooks A. (1979): Finite element analysis of incompressible viscous flows by the penalty function formulation. J Comp. Phys. 30, 1

    Google Scholar 

  • Kheshgi H. S.; Scriven L. E. (1982): Finite element analysis of incompressible viscous flow by a variable penalty function method. In: Reddy J. N. (ed.): Penalty-finite element methods in mechanics New York: ASME

    Google Scholar 

  • Leonard B. P. (1979): A stable and accurate convection modelling procedure based on quadratic upstream interpolation. Comp. Meth. Appl. Mech. Eng. 18, 59

    Google Scholar 

  • Marshall R. S.; Heinrich J. C.; Zienkiewicz O. C. (1978): Natural convection in a square enclosure by a finite-element, penalty function method using primitive fluid variables, Num. Heat Transfer 1, 315

    Google Scholar 

  • Patankar S. V. (1980): Numerical heat transfer and fluid flow. New York: Hemisphere

    Google Scholar 

  • Patankar S. V. (1981): A calculation procedure for two-dimensional elliptic situations. Num. Heat Transfer 4, 409

    Google Scholar 

  • Raithby G. D.; Schneider G. E. (1979): Numerical solution of problems in incompressible fluid flow: Treatment of the velocity-pressure coupling. Num. Heat Transfer 2 417

    Google Scholar 

  • Reddy J. N. (1982): The penalty function method in mechanics: A review of recent advances. In: Reddy J.N. (ed.), Penalty-finite element methods in mechanics. New York: ASME

    Google Scholar 

  • Spalding D. B. (1980): Mathematical modeling of fluid mechanics, heat transfer and mass transfer processes. Mech. Eng. Dept. Rpt. No HTS/80/1. London: Imperial College

    Google Scholar 

  • Temam R. (1968): Une methode d'approximation de la solution des equations de Navier-Stokes (in French). Bull. Soc. Math. France 96, 155

    Google Scholar 

  • Vanka, S. P.; Leaf, G. K. (1983): Fully coupled solution of pressure-linked fluid flow equations. Argonne National Laboratory Rpt. ANL-83-73

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, January 1, 1989

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braaten, M.E., Patankar, S.V. Fully coupled solution of the equations for incompressible recirculating flows using a penalty-function finite-difference formulation. Computational Mechanics 6, 143–155 (1990). https://doi.org/10.1007/BF00350519

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350519

Keywords

Navigation