Skip to main content
Log in

The Silurian of Gotland (Sweden): facies interpretation based on stable isotopes in brachiopod shells

  • Original Paper
  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Abstract

The Silurian of Gotland, Sweden, consists of 440 m of carbonate deposits. Repeatedly, uniform sequences of micritic limestones and marls are interrupted by complex-structured reefs and by adjacent platform sediments. Generally, the alteration of facies is interpreted as the result of sea-level fluctuations caused by a gradual regression with superimposed minor transgressive pulses. The purpose of this study is a facies interpretation based on both field observations and stable isotope measurements of brachiopod shells. Approximately 700 samples from stratigraphically arranged localities in different facies areas have been investigated. The carbon and oxygen isotopes show principally parallel curves and a close relationship to the stratigraphic sequence. Lower values occur in periods dominated by deposition of marly sequences. Higher values are observed in periods dominated by reefs and extended carbonate platforms. The oxygen isotope ratios are interpreted to reflect paleosalinity changes due to varying freshwater input, rather than to paleotemperature. Carbon isotope ratios are believed to have been connected to global changes in the burial of organic carbon in black shales during periods of euxinic deep water conditions. Consequently, the facies succession on Gotland results from global paleoclimatic conditions. Changes in terrigenous input due to different rates of weathering and freshwater runoff, rather than sea-level fluctuations, control the carbonate formation of the Silurian on Gotland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldridge RJ, Jeppsson L, Dorning KJ (1993) Early Silurian oceanic episodes and events. J Geol Soc Lond 150:501–513

    Google Scholar 

  • Berger WH, Vincent E (1986) Deep-sea carbonates: reading the carbon-isotope signal. Geol Rundsch 75:249–269

    Article  Google Scholar 

  • Broecker WS, Denton GH (1989) The role of ocean-atmosphere reorganizations in glacial cycles. Geochim Cosmochim Acta 53:2465–2501

    Article  Google Scholar 

  • Brood K (1976) Bryozoan palaeoecology in the Late Silurian of Gotland. Palaeogeogr Palaeoclimatol Palaeoecol 20:187–208

    Article  Google Scholar 

  • Charles CD, Fairbanks RG (1992) Evidence from Southern Ocean sediments for the effect of North Atlantic deep-water flux on climate. Nature 355:416–419

    Article  Google Scholar 

  • Cherns L (1983) The Hemse-Eke boundary, facies relationships in the Ludlow series of Gotland Sweden. Sveriges Geologiska Undersökning C 800:3–45

    Google Scholar 

  • CLIMAP Project Members (1981) Seasonal reconstructions of the earth’s surface at the last glacial maximum. GSA Map and Chart Ser MC-36, Boulder, Colorado

    Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen-18 variations in the ocean and marine atmosphere. In: Tongiorgi E (ed) Stable isotopes in oceanic studies and paleotemperatures. Consiglio Nazionale Delle Ricerche, Laboratorio di Geologia Nucleare, Pisa, pp 9–130

    Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Bull Geol Soc Am 64:1315–1325

    Google Scholar 

  • Erez J, Luz B (1983) Experimental paleotemperature equation for planktonic foraminifera. Geochim Cosmochim Acta 47:1025–1031

    Article  Google Scholar 

  • Fairbanks RG, Charles CD, Wright JD (1992) Origin of global meltwater pulses. In: Taylor RE (ed) Radiocarbon after four decades. Springer, Berlin Heidelberg New York, pp 473–500

    Google Scholar 

  • Fischer AG (1983) Long-term climatic oscillations recorded in stratigraphy. In: Berger WH (ed) Climate in earth history. National Academy of Sciences, pp 97–104

  • Frykman P (1989) Carbonate ramp facies of the Klinteberg formation, Wenlock-Ludlow transition on Gotland, Sweden. Sveriges Geologiska Undersökning C 820:1–79

    Google Scholar 

  • Grossman EL (1992) Isotope studies of Paleozoic paleoceanography — opportunities and pitfalls. Palaios 7 (3): 1–3

    Google Scholar 

  • Harland B, Armstrong LL, Cox AV, Craig LE, Smith AG, Smith DG (1989) A geologic time scale. Cambridge University Press, Cambridge, pp 263

    Google Scholar 

  • Hede JE (1921) Gottlands silurstratigrafi. Sveriges Geologiska Undersökning C 305:1–100

    Google Scholar 

  • Hede JE (1928) Berggrunden (Silursystemet). In: Munthe H, Hede JE, Lundqvist G: Beskrivning till kartbladet Slite. Sveriges Geologiska Undersökning A 169:13–65

    Google Scholar 

  • Hede JE (1960) The Silurian of Gotland, Guide to excursions A22 and C17. 21st Int Geol Congr Copenhagen: 44–89

  • Herb R (1984) Récifs siluriens de Gotland (Suède). In: Geister J, Herb R (eds) Géologie et paléoécologie des recifs. Bern, pp 6.1–6.22

  • Hoffman SE, Wilson M, Stakes DS (1986) Inferred oxygen isotope profile of Archean crust, Onverwacht group, South Africa. Nature 321:55–58

    Article  Google Scholar 

  • Hudson JD, Anderson TF (1989) Ocean temperatures and isotopic compositions through time. Trans Roy Soc Edinburgh 80:183–192

    Google Scholar 

  • Jeppsson L (1983) Silurian conodont faunas from Gotland. Fossils Strata 15:121–144

    Google Scholar 

  • Jeppsson L (1989) Ett långt perspektiv — något om geologin vid Ireviken. Gotländskt Arkiv 1989:718

    Google Scholar 

  • Jeppsson L (1990) An oceanic model for lithological and faunal changes tested on the Silurian record. J Geol Soc Lond 147:663–674

    Google Scholar 

  • Jeppsson L, Viira V, Männik P (1994) Silurian conodont-based correlations between Gotland (Sweden) and Saaremaa (Estonia). Geol Mag 131:201–218

    Article  Google Scholar 

  • Jux U (1957) Die Riffe Gotlands und ihre angrenzenden Sedimentationsräume. Stockholm Contrib Geol 1 (4): 41–89

    Google Scholar 

  • Jux U, Steuber T (1992) Ccarb- und Corg-Isotopenverhältnisse in der silurischen Schichtenfolge Gotlands als Hinweise auf Meeresspiegelschwankungen und Krustenbewegungen. N Jb Geol Paläontol Mh 1992:385–413

    Google Scholar 

  • Karhu J, Epstein S (1986) The implication of the oxygen isotope records in coexisting cherts and phosphates. Geochim Cosmochim Acta 50:1745–1756

    Article  Google Scholar 

  • Kinne O (1970) Temperature-invertebrates. Marine Ecol 1:407–514

    Google Scholar 

  • Kroopnick P (1985) The distribution of13C of T CO2 in the world oceans. Deep Sea Res 32:57–84

    Article  Google Scholar 

  • Land LS (1995) Comment on “Oxygen and carbon isotopic composition of Ordovician brachiopods: implications for coeval seawater” by H. Qing and J. Veizer. Geochim Cosmochim Acta 59:2843–2844

    Article  Google Scholar 

  • Laufeld S (1974a) Silurian Chitinozoa from Gotland. Fossils Strata 5:1–130

    Google Scholar 

  • Laufeld S (1974b) Reference localities for palaeontology and geology in the Silurian of Gotland. Sveriges Geologiska Undersökning C 705:1–72

    Google Scholar 

  • Laufeld S, Bassett MG (1981) Gotland: the anatomy of a Silurian carbonate platform. Episodes 2:23–27

    Google Scholar 

  • Lowenstam HA (1961) Mineralogy,18O/16O ratios, and strontium and magnesium contents of recent and fossil brachiopods and their bearing on the history of the oceans. J Geol 69:241–260

    Article  Google Scholar 

  • Manten AA (1971) Silurian reefs of Gotland. Dev Sedimentol 13:1–539

    Article  Google Scholar 

  • Martinsson A (1967) The succession and correlation of ostracode faunas in the Silurian of Gotland. Geol Fören Stockh Förh 89:350–386

    Google Scholar 

  • Muehlenbachs K (1986) Alteration of the oceanic crust and the18O history of seawater. Mineral Soc Am Rev Mineral 16:425–444

    Google Scholar 

  • Munthe H (1921) Beskrivning till kartbladet Burgsvik jämte Hoburgen och Ytterholmen. Sveriges Geologiska Undersökning A 152:1–172

    Google Scholar 

  • Popp BN, Anderson TF, Sandberg PA (1986) Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Geol Soc Am Bull 97:1262–1269

    Article  Google Scholar 

  • Qing H, Veizer J (1994) Oxygen and carbon isotopic composition of Ordovician brachiopods: implications for coeval seawater. Geochim Cosmochim Acta 58:4429–4442

    Article  Google Scholar 

  • Railsback LB (1990) Influence of changing deep ocean circulation on the Phanerozoic oxygen isotopic record. Geochim Cosmochim Acta 54:1501–1509

    Article  Google Scholar 

  • Riding R (1981) Composition, structure and environmental setting of Silurian bioherms and biostromes in northern Europe. In: Toomey DF (ed) European fossil reef models. SEPM Spec Publ 30:41–83

    Google Scholar 

  • Rush PF, Chafetz HS (1990) Fabric-retentive, non-luminescent brachiopods as indicators of originalδ 13C andδ 18O composition: a test. J Sediment Petrol 60:968–981

    Google Scholar 

  • Stel JH, Coo JCM de (1977) The Silurian upper Burgsvik and lower Hamra-Sundre Beds, Gotland. Scripta Geol 44:1–43

    Google Scholar 

  • Sundquist B (1982) Wackestone petrography and bipolar orientation of cephalopods as indicators of littoral sedimentation in the Ludlovian of Gotland. Geol Fören Stockh Förh 104:81–90

    Google Scholar 

  • Talent JA, Mawson R, Andrew AS, Hamilton PJ, Whitford DJ (1993) Middle Palaeozoic extinction events: faunal and isotopic data. Palaeogeogr Palaeoclimatol Palaeoecol 104:139–152

    Article  Google Scholar 

  • Veizer J (1995) Reply to the comment by L. S. Land on “Oxygen and carbon isotopic composition of Ordovician brachiopods: implications for coeval seawater”. Geochim Cosmochim Acta 59:2845–2846

    Article  Google Scholar 

  • Veizer J, Fritz P, Jones B (1986) Geochemistry of brachiopods: oxygen and carbon isotopic records of Paleozoic oceans. Geochim Cosmochim Acta 50:1679–1696

    Article  Google Scholar 

  • Wadleigh MA, Veizer J (1992)18O/16O and13C/12C in lower Paleozoic articulate brachiopods: implications for the isotopic composition of seawater. Geochim Cosmochim Acta 56:431–443

    Article  Google Scholar 

  • Watts NR (1981) Sedimentology and diagenesis of the Högklint reefs and their associated sediments, Lower Silurian, Gotland, Sweden. PhD thesis, University of Wales, pp 1–407

    Google Scholar 

  • Wefer G, Berger W (1991) Isotope paleourology: Growth and composition of extant caleareous species. Mar Geol 100:207–248

    Article  Google Scholar 

  • Wenzel B (1994) Isotopie und Geochemie silurischer Brachiopoden (Gotland/Schweden). Diplom Thesis, Institut Geologie Mineralogie Erlangen-Nürnberg, pp 1–124

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samtleben, C., Munnecke, A., Bickert, T. et al. The Silurian of Gotland (Sweden): facies interpretation based on stable isotopes in brachiopod shells. Geol Rundsch 85, 278–292 (1996). https://doi.org/10.1007/BF02422234

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02422234

Key words

Navigation