Skip to main content

Advertisement

Log in

Metal-ion stoichiometry of the HIV-1 RT ribonuclease H domain: evidence for two mutually exclusive sites leads to new mechanistic insights on metal-mediated hydrolysis in nucleic acid biochemistry

  • ORIGINAL ARTICLE
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

 Crystallographic studies of the Mn2+-doped RNase H domain of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) [1] have revealed two bound Mn2+ separated by approximately 4 Å and surrounded by a cluster of four conserved carboxylates. Escherichia coli RNase H is structurally similar to the RNase H domain of HIV-1 RT, but requires one divalent metal cation for its activity [2, 3], implying either that the HIV-1 RT RNase H domain contrasts in its ability to bind two divalent metal ions, or that the crystallographic data reflect specific use of Mn2+ and/or the doping technique employed. Metal binding stoichiometry has been determined for Mn2+ and the biologically more relevant Mg2+ cation by solution calorimetric studies of native and recombinant p66/p51 HIV-1 RT. Three Mn2+ ions bind to HIV-1 RT apo-enzyme: one at the DNA polymerase and two at the RNase H catalytic center, the latter being consistent with crystallographic results. However, only one Mg2+ ion is bound in the RNase H catalytic center. Several mechanistic implications arise from these results, including the possibility of mutually exclusive Mg2+ binding sites that might be occupied according to the specific reaction being catalyzed by the multifunctional RNase H domain. The occurrence of distinct binding stoichiometries for Mg2+ and Mn2+ to multifunctional enzymes has previously been reported [4].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 16 July 1999 / Accepted: 26 October 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowan, J., Ohyama, T., Howard, K. et al. Metal-ion stoichiometry of the HIV-1 RT ribonuclease H domain: evidence for two mutually exclusive sites leads to new mechanistic insights on metal-mediated hydrolysis in nucleic acid biochemistry. JBIC 5, 67–74 (2000). https://doi.org/10.1007/s007750050009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s007750050009

Navigation