Skip to main content
Log in

Estimation of arterial pulse wave velocities in the frequency domain: method and clinical considerations

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Pulse wave patterns at a finger and a toe are obtained using photoplethysmography. The data recorded at two recording sites are transformed by digital filters into six waveforms and the transmission time of each wave is estimated by the crosscorrelation function. Relationships between the transmission times, age, and parameters obtained from several laboratory tests are examined using multiple regression analysis. The results may be summarised as follows: the power of photoplethysmograms of a finger and a toe is concentrated in the range below 6 or 8 Hz; age correlates highly with the transmission time of a pulse wave rather than with velocity; the multiple correlation coefficients between age and the transmission times is 0·853 in male and 0·866 in female; there are no differences of transmission time among disease types; the correlations between age and other parameters measured by laboratory tests, that is, total cholesterol, phospholipid, triglyceride, β-lipoprotein, are very small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, N. M. andSekelj, P. (1967) Reflection and transmission of light by films of nonhaemolysed blood.Phys. Med. Biol.,12, 185–192.

    Article  Google Scholar 

  • Anliker, M., Histand, M. B. andOgden, E. (1968) Dispersion and attenuation of small artificial pressure waves in the canine aorta.Circ. Res.,23, 539–551.

    Google Scholar 

  • Anliker, M., Rockwell, R. L. andOgden, E. (1971) Nonlinear analysis of flow pulses and shock waves in arteries, part 1: derivation and properties of mathematical model.ZAMP,22, 217–246.

    Article  Google Scholar 

  • Avolio, A. P., Quan, D. F., Qiang, L. W., Fei, L. Y., Dong, H. Z., Fen, X. L. andO'Rourke, M. F. (1985) Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China.Circulation,71, 202–210.

    Google Scholar 

  • Barnes, R. W. (1978) Noninvasive evaluation of peripheral arterial disease.Angiology,29, 631–640.

    Google Scholar 

  • Busse, R., Bauer, R. D., Schabert, A., Summa, Y. andWetterer, E. (1979) An improved method for the determination of the pulse transmission characteristics of arteries in vivo.Circ. Res.,44, 630–636.

    Google Scholar 

  • Callaghan, F. J., Babbs, C. F., Bourland, J. D. andGeddes, L. A. (1984) The relationship between arterial pulse-wave velocity and pulse frequency at different pressures.J. Med. Eng. Tech.,8, 15–18.

    Google Scholar 

  • Cox, R. H. (1971) Determination of the true phase velocity of arterial pressure waves in vivo.Circ. Res.,29, 407–418.

    Google Scholar 

  • Dick, D. E., Kendrick, J. E., Matson, G. L. andRideout, V. C. (1968) Measurement of nonlinearity in the arterial system of the dog by a new method.,22, 101–111.

    Google Scholar 

  • Eliakim, M., Sapoznikov, D. andWeinman, J. (1971) Pulse wave velocity in healthy subjects and in patients with various disease states.Am. Heart J.,82, 448–457.

    Article  Google Scholar 

  • Fitzgerald, D. E., Gosling, R. G. andWoodcock, J. P. (1971) Grading dynamic capability of arterial collateral circulation.Lancet, 9th January, 66–67.

  • Giltvedt, J., Sira, A. andHelme, P. (1984) Pulsed multifrequency photoplethysmograph.Med. & Biol. Eng. & Comput.,22, 212–215.

    Google Scholar 

  • Gribbin, B., Pickering, T. G. andSleight, P. (1979) Arterial distensibility in normal and hypertensive man.Clin. Sci. 56, 413–417.

    Google Scholar 

  • Jaffrin, M. Y. andVanhoutte, C. (1979) Quantitative interpretation of arterial impedance plethysmographic signals.Med. & Biol. Eng. & Comput.,17, 2–10.

    Google Scholar 

  • Klee, G., Ackerman, E. andLeonard, A. (1974) Computer detection of distortion in arterial pressure signals?IEEE Trans. Biomed. Eng.,BME-21, 73–75.

    Google Scholar 

  • Korbell, G. K., Ko, W. H. andZollinger, R. M. (1974) Measurement of QD systolic time interval with an ear lobe densitometer.Biomed. Eng.,9, 250–251.

    Google Scholar 

  • Landowne, M. (1957) A method using induced waves to study pressure propagation in human arteries.Circ. Res.,5, 594–601.

    Google Scholar 

  • Laxminarayan, S. (1979) The calculation of forward and backward waves in the arterial system.Med. & Biol. Eng. & Comput.,17, 130.

    Google Scholar 

  • Matoba, T., Mizobuchi, H., Ito, T., Chiba, M. andToshima, H. (1981) Further observations of the digital plethysmography in response to auditory stimuli and its clinical applications.Angiology,32, 62–72.

    Google Scholar 

  • McDonald, D. A. (1968) Regional pulse-wave velocity in the arterial tree.J. Appl. Physiol.,24, 73–78.

    Google Scholar 

  • McLean, C. E., Clason, W. P. C. andStoughton, P. V. (1964) The peripheral pulse as a diagnostic tool.Angiology,15, 221–231.

    Google Scholar 

  • Milnor, W. R. andNichols, W. W. (1975) A new method of measuring propagation coefficients and characteristics impedance in blood vessels.Circ. Res.,36, 631–638.

    Google Scholar 

  • Morris, S. J., Woodcock, J. P. andWells, P. N. T. (1975) Impulse response of a segment of artery derived from transcutaneous blood-velocity measurements.Med. & Biol. Eng.,13, 803–812.

    Google Scholar 

  • Nakashima, T. andTanikawa, J. (1971) A study of human aortic distensibility with relation to atherosclerosis and aging.Angiology,22, 477–490.

    Google Scholar 

  • Newman, D. L., Penney, S. J. andGreenwald, S. E. (1983) Pulse propagation characteristics by an impulse technique.Med. & Biol. Eng. & Comput.,21, 515–517.

    Google Scholar 

  • Simonson, E., Koff, S., Keys, A. andMinckler, J. (1955) Contour of the toe pulse, reactive hyperemia, and pulse transmission velocity: group and repeat variability, effect of age, exercise, and disease.Am. Heart J.,50, 260–279.

    Article  Google Scholar 

  • Simonson, E. andNakagawa, K. (1960) Effect of age on pulse wave velocity and ‘aortic ejection time’ in healthy men and in men with coronary artery disease.Circulation,22, 126–129.

    Google Scholar 

  • Stella, A., Gessaroli, M., Cifiello, B. I., Salardi, S., Reggiani, A., Cacciari, E. andD'Addato, M. (1984) Elastic modulus in young diabetic patients (ultrasound measurements of pulse wave velocity).Angiology,35, 729–734.

    Google Scholar 

  • Talbot, S. A. andGessner, U. (1973)System physiology. John Wiley & Sons, New York.

    Google Scholar 

  • Tewari, K. P. andSundaram, K. (1971) Digital computer simulation of pulse wave transmission in arteries.Med. & Biol. Eng.,9, 297–304.

    Google Scholar 

  • Trafford, J. de andLafferty, K. (1984) What does photoplethysmography measure?Med. & Biol. Eng. & Comput.,22, 479–480.

    Google Scholar 

  • Ventura, H., Messerli, F. H., Oigman, W., Suarez, D. H., Dreslinski, G. R., Dunn, F. G., Reisin, E. andFrohlich, E. D. (1984) Impaired systemic arterial compliance in borderline hypertension.Am. Heart J.,108, 132–136.

    Article  Google Scholar 

  • Weinman, J. andSapoznikov, D. (1971a) The shift of the arterial pulse-wave foot on recordings with a rising or falling baseline.IEEE Trans. Biomed. Eng.,BME-18, 56–59.

    Google Scholar 

  • Weinman, J. andSapoznikov, D. (1971b) Equipment for continuous measurements of pulse wave velocities.Med. & Biol. Eng.,9, 125–138.

    Google Scholar 

  • Weinman, J., Hayat, A. andRaviv, G. (1977) Reflection photoplethysmography of arterial-blood-volume pulses.Med. & Biol. Eng. & Comput.,15, 22–31.

    Google Scholar 

  • Westerhof, N., Sipkema, P., Van den Bos, G. C. andElzinga, G. (1972) Forward and backward waves in the arterial system.Cardiovas. Res., 648–656.

  • Woodcock, J. P., Morris, S. J. andWells, P. N. T. (1975) Significance of the velocity impulse response and cross-correlation of the femoral and popliteal blood-velocity/time waveforms in disease of the superficial femoral artery.Med. & Biol. Eng.,13, 813–818.

    Google Scholar 

  • Yamakoshi, K., Kamiya, A., Shimazu, H., Ito, H. andTogawa, T. (1983) Noninvasive automatic monitoring of instantaneous arterial blood pressure using the vascular unloading technique.Med. & Biol. Eng. & Comput.,21, 557–565.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, M., Kimura, S. & Okada, M. Estimation of arterial pulse wave velocities in the frequency domain: method and clinical considerations. Med. Biol. Eng. Comput. 24, 255–260 (1986). https://doi.org/10.1007/BF02441621

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441621

Keywords

Navigation