Skip to main content
Log in

Computationally two-dimensional finite-difference model for hollow-fibre blood-gas exchange devices

  • Modelling
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The goal of this research is to develop a predictive model with good absolute accuracy for blood-gas exchange devices. The proposed model, unlike existing models, is able to predict gas transfer to blood flowing outside oxygenating fibres without experimental data. The proposed model uses a finite-difference numerical technique to solve computationally two-dimensional gas exchange problems such as gas transfer to blood outside hollow fibres. The model is compared to bovine and human experimental data from the small test cells with microporous polypropylene fibres. The test cell flow rates range from 1 m litre min−1 to 5 m litre min−1 for a 72-fibre device. Shear-augmented oxygen diffusion appears to be present, although good accuracy is obtained with a nonaugmented diffusion model, particularly at lower flows. The maximum deviation of oxygen saturation predicted by a shearaugmented bovine blood model from the experimental regression line was 1·7 per cent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AAMI (1982) Association for the Advancement of Medical Instrumentation. Standard for blood/gas exchange devices (oxygenators).

  • Baker, D. A. (1989) Modelling of hollow-fiber blood-gas exchange devices. Ph.D. thesis, University of Minnesota.

  • Benn, J. A., Drinker, P. A., Mikic, B., Shults, M. C., Lacava, E. J., Kopf, G. S., Bartlett, R. H. andHanson, E. L. (1971) Predictive correlation of oxygen and carbon dioxide transfer in a blood oxygenator with induced secondary flows.Trans. Amer. Soc. Artif. Intern. Organs,17, 317–322.

    Google Scholar 

  • Berman, J. andMockros, L. F. (1986) Mass transfer to fluids flowing through rotating nonaligned straight tubes.J. Biomech. Eng.,108, 342–349.

    Article  Google Scholar 

  • Brown, L. J. (1980) A new instrument for the simultaneous measurement of total hemoglobin, % oxyhemoglobin, % carboxyhemoglobin, % methemoglobin, and oxygen content in whole blood,IEEE Trans. Biomed. Engr.,27, 132–138.

    Google Scholar 

  • Buckles, R. G., Merril, E. W. andGuilliland, E. R. (1968) An analysis of oxygen absorption in a tubular membrane oxygenator.A.I.Ch.E.J.,14, 703–708.

    Google Scholar 

  • Collingham, R. E. (1968) Mass transfer in flowing suspensions. Ph.D. thesis, University of Minnesota.

  • Colton, C. K. andDrake, R. F. (1971) Effect of boundary conditions on oxygen transport to blood flowing in a tube. Chem. Engr. Progr. Symp., (114),67, 88–95.

    Google Scholar 

  • Colton, C. K. (1976) Fundamentals of gas transport in blood. InArtificial lungs for acute respiratory failure theory and practice.Zapol, W. M. andQvist, J. (Eds.), Academic Press.

  • Cooney, D. O. (1976)Biomedical engineering priciples: an introduction to fluid, heat, and mass transport processes, Dekker.

  • Davey, T. B. andSmeloff, E. A. (1982) Cardiovascular prostheses and assist devices. InTherapeutic medical devices, application and design.Cook, A. M. andWebster, J. G. (Eds.), Prentice-Hall, 86–126.

  • DeFilippi, R. P., Tompkins, F. C., Porter, J. H., Timmins, R. S. andBuckley, M. J. (1968) The capillary membrane blood oxygenator:in vitro andin vivo gas exchange measurements.Trans. Am. Soc. Art. Intern. Organs,14, 236–241.

    Google Scholar 

  • Dorson, W. J., Larsen, K. G., Elgas, R. G. andVoorhees, M. E. (1971) Oxygen transfer to blood: data and theory.Trans. Am. Soc. Art. Intern. Organs,17, 309–316.

    Google Scholar 

  • Dorson, W. J. andVoorhees, M. E. (1976) Analysis of oxygen and carbon dioxide transfer in membrane lungs. InArtificial lungs for acute respiratory failure theory and practice.Zapol, W. M. andQvist, J. (Eds.), Academic Press.

  • Gassmann, C. J., Galbraith, G. D. andSmith, R. G. (1987) Evaluation of three types of membrane oxygenators and their suitability for use with pulsatile flow.J. Extra-Corpor. Technol.,19, 297–304.

    Google Scholar 

  • Gaylor, J. D. andSmeby, L. C. (1976) The Taylor-vortex membrane oxygenator: design analysis based on predictive correlation for oxygen transfer. InPhysiological and clinical aspects of oxygenator design.Dawids, S. G. andEngell, H. C. (Eds.), Elsevier.

  • Goldstick, T. K. (1973) Oxygen transport. InEngineering principles in physiology.Brown, J. andGann, D. (Eds.), Academic Press.

  • Harris, G. W., Tompkins., F. C., DeFilippi, R. P. andPorter, J. H. (1970) Development of capillary membrane blood oxygenators. In Int. Symp. on Blood Oxygenation Proc.,Hershey, D. (Ed.), Plenum, Press.

  • Hill, A. V. (1910) The possible effects of aggregation of the molecules of haemoglobin on its dissociation curve.J. Physiol. Lond.,40, 4–7.

    Google Scholar 

  • Jayaraman, G., Lautier, A., Hung, B. M., Jarry, G. andLaurent, D. (1981) Numerical scheme for modelling oxygen transport in tubular oxygenators.Med. & Biol. Eng. & Comput.,19, 524–534.

    Article  Google Scholar 

  • Keller, K. H. (1971) Effect of fluid shear on mass transport in flowing blood.Fed. Proc.,30, 1591–1599.

    Google Scholar 

  • Lautier, A., Grossin, R. andLaurent, D. (1971) The use of mathematical and physical models for optimization of oxygenators.Trans. Am. Soc. Art. Intern. Organs,17, 303–308.

    Google Scholar 

  • Lautier, A., Dehe, T., Goda, T. andLaurent, D. (1985) The third generation of membrane oxygenators: evolution of concepts.Life Support Syst.,3, 285–288.

    Google Scholar 

  • Lenfant, C., Torrance, J. D. andFinch, C. A. (1969) The regulation of hemoglobin affinity for oxygen in man.Trans. Assn. Amer. Physicians,85, 121–128.

    Google Scholar 

  • Lightfoot, E. N. (1968) Low order approximation for membrane blood oxygenators.A.I.Ch.E.J.,14, 669–670.

    Google Scholar 

  • Marx, T., Baldwin, B. R. andMiller, D. R. (1962) Factors influencing oxygen uptake by blood in membrane oxygenators.Ann. Surgery,156, 204.

    Google Scholar 

  • Merchuk, J. C., Tanni, J., Dvilanski, A. andNathan, I. (1987). Evaluation of a new type of membrane for blood oxygenation.Biomater. Artif. Cells Artif. Organs,15, 509–538.

    Google Scholar 

  • Mockros, L. F. andGaylor, J. D. S. (1975) Artificial lung design: tubular membrane units.Med. & Biol. Eng.,13, 171–181.

    Google Scholar 

  • Mockros, L. F. andLeonard, R. (1985) Compact cross-flow tubular oxygenators.Trans. Am. Soc. Art. Intern. Organs 31, 628–632.

    Google Scholar 

  • Overcash, M. R. (1972) Couette oxygenator. Ph.D. thesis, University of Minnesota.

  • Patankar, S. V. (1980)Numerical heat transfer and fluid flow. Hemisphere.

  • Richardson, P. D. (1987) Artificial lungs and oxygenation devices. InHandbook of Bioengineering. Chien, S. and Skalak, R. (Eds.), McGraw-Hill.

  • Schultz, D. H., Shah, V. L., Shay, W. andWang, P. (1977) Diffusion of oxygen and carbon dioxide through blood flowing through a channel.Med. & Biol. Eng. & Comput.,15, 98–105.

    Google Scholar 

  • Siggaard-Andersen, O., Wimberley, P. D., Gothgen, I. andSiggaard-Andersen, M. (1984) A mathematical model of the hemoglobin-oxygen dissociation curve of human blood and of the oxygen partial pressure as a function of temperature.Clin. Chem.,30, 1646–1651.

    Google Scholar 

  • Smeby, L. andGrimsrud, L. (1974) Theoretical investigation of mass transfer in membrane oxygenators.Med. & Biol. Eng.,12, 698–706.

    Google Scholar 

  • Stein, T. R. (1968) augmented diffusion of oxygen. Ph.D. thesis, Univ. of Minnesota.

  • Stein, T. R., Martin, J. C. andKeller, K. H. (1971) Steady-state oxygen transport through red blood cell suspensions.J. Appl. Physiol.,31, 397–402.

    Google Scholar 

  • Villarroel, F., Lanham, C. E., Bischoff, K. B., Regan, T. M. andCalkins, J. M. (1971) Gas transfer to blood flowing in semipermeable tubes under steady and pulsatile flow conditions. Chem. Engr. Progr. Symp. (114),67, 96–104.

    Google Scholar 

  • Wang, N. L. (1978) Effects of fluid shear on the mass transport properties of erythrocyte suspensions. Ph.D. thesis, Univ. of Minnesota.

  • Wang, N. L. andKeller, K. H. (1979) Solute transport induced by erythrocyte motions in shear flow.Trans. Amer. Soc. Artif. Intern. Organs,25, 14–17.

    Google Scholar 

  • Wang, N. L. andKeller, K. H. (1985) Augmented transport of extracellular solutes in concentrated erythrocyte suspensions in Couette flow.J. Colloid Inter. Sci.,103, 210–225.

    Article  Google Scholar 

  • Weissman, M. H. andMockros, L. F. (1967) Oxygen transfer to blood flowing in round tubes.,J. Eng. Mech. Div., Am. Soc. Civ. Eng.,93, 225–244.

    Google Scholar 

  • Weissman, M. H. andMockros, L. F. (1969) Oxygen and carbon dioxide transfer in a membrane oxygenators.Med. & Biol. Eng. Comput.,7, 169–184.

    Google Scholar 

  • Williams, J. (1974) The influence of drawing on the transport properties of gases and vapors in polymers. InPermeability of plastic films and coatings to gases, vapors and liquids.Hopfenberg, H. B. (Ed.), Plenum, Press.

  • Zijlstra, W. G. andOesburg, B. (1989) Definition and notation of hemoglobin oxygen saturation.IEEE Trans. Biomed. Engr.,36, 872.

    Google Scholar 

  • Zwart, A., Kwant, G., Oesburg, B. andZijlstra, W. G. (1982) Oxygen dissociation curve for whole blood, recorded with an instrument that continuously measures PO2 and SO2 independently at constantT, PCO2, and pH,Clin. Chem.,28, 1287–1292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, D.A., Holte, J.E. & Patankar, S.V. Computationally two-dimensional finite-difference model for hollow-fibre blood-gas exchange devices. Med. Biol. Eng. Comput. 29, 482–488 (1991). https://doi.org/10.1007/BF02442318

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02442318

Keywords

Navigation