Skip to main content

Advertisement

Log in

Respiratory effects on cardiac related impedance indices measured under voluntary cardio-respiratory synchronisation (VCRS)

  • Physiological Measurement
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The respiratory effects on impedance-determined cardiac indices ((dZ/dt)min, stroke volume (SV), the Heather index (HI) and the O-wave) were measured at 100 kHz on ten normal males in the supine and sitting positions. The respiration was synchronised to 1/5th of the heart rate using voluntary cardiorespiratory synchronisation (VCRS). Digital filtering was used to eliminate breathing artefacts in the impedance signals, SV, (dZ/dt)min and HI were statistically higher during inspiration than expiration. Ensemble-averaging of (dZ/dt) signals using the R spike of the ECG as reference will lose beat-to-beat information and statistically reduce (dZ/dt)min because of the variation of RZ intervals during respiration Zo increased with inspiration and decreased in expiration delayed by one heart beat. The ratio of the O-wave height to (dZ/dt)min changed by 48 per cent from the beginning of inspiration to the end of expiration. Based on the timing and direction of the changes, the data imply that the traditional band impedance measurement is more closely related to the right heart event than to that of the left heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almasi, J. J. andSchmitt, O. H. (1974) Basic technology of voluntary cardiorespiratory synchronization in electrocardiology.IEEE Trans.,BME-21, (4), 264–273.

    Google Scholar 

  • Almasi, J. J. andSchmitt, O. H. (1970) Systematic and random variation of ECG electrode system impedence.Ann. NY Acad. Sci.,170, 509.

    Google Scholar 

  • Denniston, J. C., Maher, J. T., Reeves, J. T., Cruz, J. C., Cymerman, A. andGrover, R. F. (1976) Measurement of cardiac output by electrical impedance at rest and during exercise.J. Appl. Physiol.,40, 91–95.

    Google Scholar 

  • Doerr, B. M., Miles, D. S. andFrey, M. A. B. (1981) Influence of respiration on stroke volume determined by impedance cardiography.Aviat. Space Environ. Med.,52, (7), 394–398.

    Google Scholar 

  • Donovan, K. D., Dobb, G. J., Woods, W. P. andHockings, B. E. (1986) Comparisons of transthoracic electrical impedance and thermodilution methods for measuring cardiac output.Critical Care Med.,14, 1038–1044.

    Article  Google Scholar 

  • Ferrigno, M., Hickey, D. D., Liner, M. H. andLundgren, C. E. G. (1986) Cardiac performance in humans during breath holding.J. Appl. Physiol.,60, 1871–1877.

    Google Scholar 

  • Geddes, L. E. andBaker, L. E. (1972) Thoracic impedance changes following saline injection into right and left ventricles.J. Appl. Physiol.,33, 278–281.

    Google Scholar 

  • Hill, R. V., Jasen, J. C. andFling, J. L. (1967) Electrical impedance plethysmography: a critical analysis.J. Appl. Physiol.,22, 161–168.

    Google Scholar 

  • Hubbard, W. N., Fish, D. R. andMcBrien, D. J. (1986) The use of impedance cardiography in heart failure.Int. J. Cardiol.,12, 71–79.

    Article  Google Scholar 

  • Kubicek, W. G., Karnegis, J. N., Patterson, R. P., Witsoe, D. A. andMattson, R. H. (1966) Development and evaluation of an impedance cardiac output system.Aerospace Med.,37, 1208–1212.

    Google Scholar 

  • Kubicek, W. G., Kottke, F. J., Ramos, M. U., Patterson, R. P., Witsoe, D. A., LaBree, J. W., Remole, W., Layman, T. E., Shoening, H. andGaramella, J. T. (1974) The Minnesota impedance cardiograph—theory and applications.Biomed. Eng.,9, 410–416.

    Google Scholar 

  • Lababidi, Z., Ehmke, D. A., Durnin, R. E., Leaverton, P. E. andLauer, R. M. (1970) The first derivative thoracic impedance cardiogram.Circulation,XLI, 651–658.

    Google Scholar 

  • Miyamoto, Y., Tamura, T. andMikami, T. (1981) Automatic determination of cardiac output using an impedance plethysmography.Biotelem. Patient Monit.,8, 189–203.

    Google Scholar 

  • Mohapatra, S. N. (1981)Noninvasive cardiovascular monitoring by electrical impedance techniques. Pitman Medical, London.

    Google Scholar 

  • Muzi, M., Ebert, T. J., Tristani, F. E., Jeutter, D. C., Barney, J. A. andSmith, J. J. (1985) Determination of cardiac output using ensemble-averaged impedance cardiograms.J. Appl. Physiol.,58, 200–205.

    Google Scholar 

  • Patterson, R. P., Kubicek, W. G., Kinnen, E., Witsoe, D. A. andNoren, G. (1964) Development of an electrical impedance plethysmography system to monitor cardiac output. Proc. of the First Ann. Rocky Mountain Bioeng. Symp., 56–71.

  • Patterson, R. P. (1978) The use of signal averaging of the electrical impedance signal to determine cardiac timing information during uninterrupted exercise. Proc. of the 13th Ann. Meeting of AAMI, Arlington, Virginia, USA, 206.

  • Patterson, R. P. (1989) Fundamentals of impedance cardiography.IEEE Eng. in Med. and Biol.,8, (1), 35–38.

    Article  Google Scholar 

  • Penny, B. (1986) Theory and cardiac applications of electrical impedance measurements.CRC Critical Reviews in Biomed. Eng.,13, 227–281.

    Google Scholar 

  • Permutt, S. andWise, R. A. (1986) Mechanical interaction of respiration and circulation. InHandbook of Physiology.Fishman, A. (Ed.) American Physiological Society, Bethesda, MD, USA, 647–659.

    Google Scholar 

  • Quesnay, M. C. D., Stoute, G. J. andHughson, R. L. (1987) Cardiac output in exercise by impedance cardiography during breath holding and normal breathing.J. Appl. Physiol.,62, 101–107.

    Article  Google Scholar 

  • Ramos, M. U. (1977) An abnormal early diastolic impedance waveform: A predictor of poor prognosis in the cardiac patient?Am. Heart J.,94 (3), 274–281.

    Google Scholar 

  • Raza, S. B., Patterson, R. P. andWang, L. (1989) Removal of respiratory artifacts. Presented at 11th Int. Conf. of IEEE in Med. and Biol., Seattle, WA, USA.

  • Ruskin, J., Bache, R. J., Rembert, J. C. andGreenfield, J. C. (1973) Pressure-flow studies in man: Effect of respiration on left ventricular volume.CirculationXLVIII, 79–85.

    Google Scholar 

  • Smith, J. J., Muzi, M., Barney, J. A., Ceschi, J., Hayes, J. andEbert, T. (1989) Impedance-derived cardiac indices in supine and upright exercise.Annals of Biomed. Eng.,17, 507–515.

    Article  Google Scholar 

  • Sokolow, M. andMcIlroy, M. B. (1986)Clinical cardiology. Lange Medical Publications, Los Altos, California, USA.

    Google Scholar 

  • Thompson, F. D. andJoekes, A. M. (1981)Thoracic impedance. Cardiodynamic assessment: validation in clinical use. St. Peter's Hospital. Geigy Pharmaceutical, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Patterson, R.P. & Raza, S.B. Respiratory effects on cardiac related impedance indices measured under voluntary cardio-respiratory synchronisation (VCRS). Med. Biol. Eng. Comput. 29, 505–510 (1991). https://doi.org/10.1007/BF02442322

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02442322

Keywords

Navigation