Skip to main content
Log in

Neutrophil function and host resistance

Neutrophilen-Funktion und Körperabwehr

  • Review
  • Published:
Infection Aims and scope Submit manuscript

Summary

The part played by the phagocytic cells against invading pathogens has been known since the work ofMetchnikoff nearly a century ago. This review deals primarily with the role of the neutrophilic polymorphonuclear leukocyte in host defense against microbial infections. The overall function of these cells in protection from infection is dependent on a number of steps. First, an adequate number of functionally mature neutrophils have to be produced and released into the circulation by the bone marrow. Cells must circulate normally and be capable of adhering to capillary and venule walls overlying inflammatory sites. The next step involves the exit of phagocytes from the blood stream through the capillary wall and emigration into the tissues to establish contact with the invading pathogens. This process is accomplished by the locomotive characteristics of these cells and chemotaxis. Most organisms must then be phagocytized to be killed. Two discrete phases are involved in phagocytosis; the “recognition” and attachment phase followed by the ingestion phase. After phagocytosis a series of coordinated morphologic and biochemical events are set into motion which leads to eventual death and lysis of the ingested microbes. A variety of antimicrobial mechanisms are involved in this final step and indicate that these cells have an appreciable reserve capacity if one mechanism is impaired. Recent evidence which clarifies mechanisms involved in all these stages is discussed.

Zusammenfassung

Die Rolle, die die phagozytierenden Zellen gegen eindringende Pathogene spielen, ist seit den Arbeiten von Metchnikoff vor fast einem Jahrhundert bekannt. Diese Übersicht befaßt sich in erster Linie mit der Rolle der neutrophilen polymorphkernigen Granulozyten in der Abwehr des Körpers gegen mikrobielle Infektionen. Die Gesamtfunktion dieser Zellen bei der Infektabwehr hängt von einer Reihe von Schritten ab. Erstens muß eine entsprechende Anzahl von funktionell reifen Neutrophilen gebildet und vom Knochenmark in den Kreislauf ausgeschüttet werden. Die Zellen müssen normal zirkulieren und fähig sein, an Kapillaren- oder Venolenwänden, die Entzündungsherden anliegen, zu haften. Der nächste Schritt betrifft den Austritt von Phagozyten aus dem Blutstrom durch die Kapillarwand und das Auswandern in die Gewebe, um einen Kontakt mit den eindringenden Pathogenen herzustellen. Dieser Vorgang wird durch die lokomotorischen Eigenschaften dieser Zellen und durch Chemotaxis verwirklicht. Die meisten Keime müssen dann phagozytiert werden, damit sie getötet werden. Zwei verschiedene Phasen sind in den Phagozytosevorgang eingeschlossen: die Phase der „Erkennung“ und die Adhäsion, der die Phase der Ingestion folgt. Nach der Phagozytose wird eine Reihe von koordinierten morphologischen und biochemischen Schritten in Bewegung gesetzt, die möglicherweise zum Tod und zur Lyse der aufgenommenen Mikroben führen. Eine Vielfalt von antimikrobiellen Mechanismen ist an diesem letzten Schritt beteiligt, und damit ist gezeigt, daß diese Zellen eine beachtliche Reservekapazität haben, wenn ein Mechanismus gestört ist. Neue Erkenntnisse, die die Mechanismen aufklären, die an allen diesen Schritten beteiligt sind, werden diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Metchnikoff, E. Immunity in infective disease (translated byF. G. Binnie). Cambridge University Press, London, 1905.

    Google Scholar 

  2. Langevoort, H. L., Cohn, Z. A. The nomenclature of mononuclear phagocytic cells. In:van Furth, R. (ed.): Mononuclear phagocytes. Blackwell Scientific Publications, Oxford, 1975, p. 1–6.

    Google Scholar 

  3. Beeson, P. B., Bass, D. A. The eosinophil. In:Smith, L. H. (ed.): Major problems in internal medicine, Vol. XIV. Saunders Corp., Philadelphia, 1977.

    Google Scholar 

  4. Bainton, D. F. Differentiation of human neutrophilic granulocytes: Normal and abnormal. In:Greenwalt, T. J., Jamieson, G. A. (ed.): The granulocyte: Function and clinical utilization. Alan R. Liss, Inc., New York, 1977, p. 1–27.

    Google Scholar 

  5. Lichtman, M. A., Weed, R. J. Alteration of the cell periphery during granulocyte maturation: relation to cell function. Blood 39 (1972) 301–316.

    Google Scholar 

  6. Giordano, G. F., Lichtman, M. A. Marrow cell egress: The central interaction of barrier pore size and cell maturation. J. Clin. Invest. 52 (1973) 1154–1164.

    Google Scholar 

  7. Cartwright, G. E., Athens, J. W., Wintrobe, M. D. The kinetics of granulopoesis in normal man. Blood 24 (1964) 780–803.

    Google Scholar 

  8. Galbright, P. R., Valberg, K. S., Brown, M. Patterns of granulocyte kinetics in health, infection and carcinoma. Blood 25 (1965) 683–692.

    Google Scholar 

  9. Craddock, C. G. Production, distribution and fate of granulocytes. In:Williams, W. J., Beutler, E., Erslev, A. J., Rundles, R. W. (ed.): Hematology. McGraw Hill Co., New York, 1972, p. 607–618.

    Google Scholar 

  10. Fedorko, M. E., Hirsch, J. G. Cytoplasmic granule formation in myelocytes: an electron microscope radioautographic study on cytoplasmic granules in rabbit heterophilic myelocytes. J. Cell. Biol. 29 (1966) 307–316.

    Google Scholar 

  11. Baggiolini, M., de Duve, C., Masson, P. L. Association of lactoferrin with specific granules in rabbit heterophil leukocytes. J. Exp. Med. 131 (1970) 559–570.

    Google Scholar 

  12. Beck, W. S. The control of leukocyte glycolysis. J. Biol. Chem. 232 (1958) 251–270.

    Google Scholar 

  13. Whitelaw, D. M. Monocyte kinetics. In:van Furth, R. (ed.): Mononuclear phagocytes. Blackwell Scientific Publications, Oxford, 1975, p. 175–188.

    Google Scholar 

  14. van Furth, R. Modulation of monocyte function. In:van Furth, R. (ed.): Mononuclear phagocytes. Blackwell Scientific Publications, Oxford, 1975, p. 161–174.

    Google Scholar 

  15. Nichols, B. A., Bainton, D. F. Ultrastructure and cytochemistry of mononuclear phagocytes. In:van Furth, R. (ed.): Mononuclear phagocytes. Blackwell Scientific Publications, Oxford, 1975, p. 17–55

    Google Scholar 

  16. Cline, M. J. The White Cell. Harvard University Press, Cambridge, 1975, p. 479–530.

    Google Scholar 

  17. Karnovsky, M. L. Metabolic basis of phagocytic activity. Physiol. Rev. 42 (1962) 143–168.

    Google Scholar 

  18. Wilkinson, P. C. The role of chemotaxis in inflammatory reactions. In: Chemotaxis and inflammation. Churchill Livingstone, London, 1974, p. 148–166.

    Google Scholar 

  19. MacGregor, R. R. The effect of anti-inflammatory agents and inflammation on granulocyte adherence. Am. J. Med. 61 (1976) 597–607.

    Google Scholar 

  20. McCutcheon, M. Chemotaxis in leukocytes. Physiol. Rev. 26 (1946) 319–326.

    Google Scholar 

  21. Ward, P. A., Becker, E. L. Biology of leukotaxis. Rev. Physiol. Biochem. Pharmacol. 77 (1977) 125–148.

    Google Scholar 

  22. Sandberg, A. L., Snyderman, R., Frank, M. M. Production of chemotactic activity by guinea pig immunoglobulins following activation of the C3 complement shunt pathway. J. Immunol. 108 (1972) 1227–1231.

    Google Scholar 

  23. Kaplan, A. P., Kay, A. B., Austen, K. F. A prealbumin activator of prekallikrein III., Appearance of chemotactic activity for human neutrophils by the conversion of human prekallikrein to kallikrein. J. Exp. Med. 135 (1972) 81–97.

    Google Scholar 

  24. Kaplan, A. P., Goetzel, E. J., Austen, K. F. The fibrinolytic pathway of human plasma II., The generation of chemotactic activity by activation of plasminogen proactivator. J. Clin. Invest. 52 (1973) 2591–2595.

    Google Scholar 

  25. Zigmond, S. H., Hirsch, J. G. Leukocyte locomotion and chemotaxis: new methods for evaluation and demonstration of a cell-derived chemotactic factor. J. Exp. Med. 137 (1973) 387–410.

    Google Scholar 

  26. Altman, L. C. Chemotactic lymphokines: A review. In:Gallin, J. I., Quie, P. G. (eds.): Leukocyte chemotaxis. Raven Press, New York, 1978, p. 267–287.

    Google Scholar 

  27. Stossel, T. P. The mechanism of leukocyte locomotion. In:Gallin, J. I., Quie, P. G. (eds.): Leukocyte chemotaxis. Raven Press, New York, 1978, p. 143–160.

    Google Scholar 

  28. Ramsey, W. S. In:Sorkin, E. (ed.): Chemotaxis: Its Biology and Biochemistry. Karger, Basel, 1974, p. 179.

    Google Scholar 

  29. Ramsey, W. Retraction fibers and leukocyte chemotaxis. Exp. Cell. Res. 86 (1974) 184–187.

    Google Scholar 

  30. Reaven, E. P., Axline, S. G. Subplasmalemmal microfilaments and microtubules in resting and phagocitizing cultivated macrophages. J. Cell Biol. 59 (1973) 12–27.

    Google Scholar 

  31. Becker, E. L., Showell, H. J. The effect of Ca++ and Mg++ on the chemotaxis responsiveness and spontaneous mobility of rabbit polymorphonuclear leukocytes. Z. Immun. Forsch. 143 (1972) 466–476.

    Google Scholar 

  32. Gallin, J. I., Rosenthal, A. S. L. The regulatory role of divalent cations in human granulocyte chemotaxis: Evidence for an asociation between calcium exchange and microtubule assembly. J. Cell Biol. 62 (1974) 594–609.

    Google Scholar 

  33. Olmstead, J. B., Borisy, G. G. Microtubules. Ann. Rev. Biochem. 42 (1973) 507–540.

    Google Scholar 

  34. Goldstein, I., Hoffstein, S., Gallin, J. I. Mechanisms of lysosomal enzyme release from human leukocytes: Microtubule assembly and membrane fusion induced by a component of complement. Proc. Natl. Acad. Sci. USA 70 (1973) 2916–2920.

    Google Scholar 

  35. Hoffstein, S. Microtubule assembly and secretion in human polymorphonuclear leukocytes. Fed. Proc. 34 (1975) 868 (abstr.).

    Google Scholar 

  36. Gallin, J. I., Gallin, E. K., Malech, H. L., Cramer, E. B. Structural and ionic events during leukocyte chemotaxis. In:Gallin, J. I., Quie, P. G. (eds.): Leukocyte chemotaxis. Raven Press, New York, 1978, p. 123–142.

    Google Scholar 

  37. Hill, H. R., Estensen, R. D., Quie, P. G., Hogan, N. A., Goldberg, N. D. Modulation of neutrophil chemotactic responses by cyclic 3'5'-guanosine monophosphate and cyclic 3', 5'-adenosine monophosphate. Metab. 24 (1974) 447–456.

    Google Scholar 

  38. Stossel, T. P. Phagocytosis. N. Engl. J. Med. 290 (1974) 717–723, 774–780, 833–839.

    Google Scholar 

  39. Estensen, R. D., Hill, H. R., Quie, P. G. Cyclic GMP and cell movement. Nature 245 (1973) 458–460.

    Google Scholar 

  40. Stossel, T. P. Phagocytosis: Recognition and ingestion. Semin. Hematol. 12 (1975) 83–116.

    Google Scholar 

  41. Silverstein, S. C., Steinman, R. M., Cohn, Z. A. Endocytosis. Ann. Rev. Biochem. 46 (1977) 699–722.

    Google Scholar 

  42. Huber, H., Fudenberg, H. H. Receptor sites of human monocytes for IgG. Int. Arch. Allergy Appl. Immunol. 34 (1968) 18–31.

    Google Scholar 

  43. Quie, P. G. Bactericidal function of human polymorphonuclear leukocytes. Pediatrics 50 (1972) 264–270.

    Google Scholar 

  44. Johnston, R. B., Jr., Klemperer, M. R., Alper, C. A. The enhancement of bacterial phagocytosis by serum: the role of complement components and two cofactors. J. Exp. Med. 129 (1969) 1275–1290.

    Google Scholar 

  45. Stossel, T. P., Field, R. J., Gitlin, J. D., Alper, C. A., Rosen, F. S. The opsonic fragment of the third component of human complement (C3). J. Exp. Med. 141 (1975) 1329–1347.

    Google Scholar 

  46. Hartwig, J. H., Stossel, T. P. Isolation and properties of actin, myosin and a new actin-binding protein in rabbit alveolar macrophages. J. Biol. Chem. 250 (1975) 5696–5705.

    Google Scholar 

  47. Stossel, T. P., Hartwig, J. H. Interactions between actin, myosin and an actin-binding protein from rabbit alveolar macrophages. J. Biol. Chem. 250 (1975) 5706–5712.

    Google Scholar 

  48. Stossel, T. P., Hartwig, J. H. Interaction of actin, myosin and a new actin-binding protein of rabbit pulmonary macrophages. J. Cell Biol. 68 (1976) 602–619.

    Google Scholar 

  49. Stossel, T. P. How do phagocytes eat? Ann. Int. Med. 89 (1978) 398–402.

    Google Scholar 

  50. Malawista, S. E., Gee, J. B. L., Bensch, K. G. Cytochalasin B reversibly inhibits phagocytosis. Yale J. Biol. Med. 44 (1971) 286–300.

    Google Scholar 

  51. David, A. T., Estensen, R., Quie, P. G. Cytochalasin B III: Inhibition of human polymorphonuclear leukocyte phagocytosis. Proc. Soc. Exp. Biol. Med. 137 (1971) 161–167.

    Google Scholar 

  52. Huxley, H. E. The mechanism of muscular contraction. Science 164 (1969) 1356–1365.

    Google Scholar 

  53. Bessis, M. Living blood cells and their ultrastructure (translated byWeed, R. I.), Springer Verlag, New York, 1973.

    Google Scholar 

  54. Werb, Z., Cohn, Z. A. Plasma membrane sythesis in the macrophage following phagocytosis of polystyrene latex particles. J. Biol. Chem. 247 (1972) 2439–2446.

    Google Scholar 

  55. Schmidt, M. E., Douglas, S. D. Disappearance and recovery of human monocyte IgG receptor activity after phagocytosis. J. Immunol. 109 (1972) 914–917.

    Google Scholar 

  56. Bainton, D. F. Sequential degranulation of the two type of polymorphonuclear leukocyte granules during phagocytosis of microorganisms. J. Cell Biol. 58 (1973) 249–264.

    Google Scholar 

  57. Stossel, T. P., Pollard, T. D., Mason, R. J. Isolation and properties of phagocytic vesicles from polymorphonuclear leukocytes. J. Clin. Invest. 50 (1971) 1745–1757.

    Google Scholar 

  58. Zurier, R. B., Hoffstein, S., Weissmann, G. Cytochalasin B: effect on lysosomal enzyme release from human leukocytes. Proc. Natl. Acad. Sci. USA 70 (1973) 844–848.

    Google Scholar 

  59. Zurier, R. B., Weissmann, G., Hoffstein, S. Mechanisms of lysosomal enzyme release from human leukocytes. II. Effects of cAMP and cGMP, autonomic agonists, and agent which affect microtubule function. J. Clin. Invest. 53 (1974) 297–309.

    Google Scholar 

  60. Hoffstein, S., Weissmann, G. Microfilaments and microtubules in calcium ionophore induced secretion of Lysosomal enzymes from human PMNs. J. Cell. Biol. 78 (1978) 769–781.

    Google Scholar 

  61. Weissmann, G. Lysosomal mechanisms of tissue injury in arthritis. N. Engl. J. Med. 286 (1972) 141–147.

    Google Scholar 

  62. Armstrong, J. A., D'Arcy Hart, P. Response of culture macrophages to mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J. Exp. Med. 134 (1971) 713–740.

    Google Scholar 

  63. Jones, T. C., Hirsch, J. G. The interaction between Toxoplasma gondii and mammalian cells. II. The absence of lysosomal fusion with phagocytic vacuoles containing living parasites. J. Exp. Med. 136 (1972) 1173–1194.

    Google Scholar 

  64. Babior, B. M. Oxygen-dependent microbial killing by phagocytes. New Engl. J. Med. 298 (1978) 659–668, 721–725.

    Google Scholar 

  65. De Chatelet, L. R. Initiation of respiratory burst in human polymorphonuclear neutrophils: a critical review. J. Reticuloendothel. Soc. 24 (1978) 73–91.

    Google Scholar 

  66. Cheson, B. D., Curnutte, J. T., Babior, B. M. The oxidative killing mechanisms of the neutrophil. Prog. Clin. Immunol. 3 (1977) 1–65.

    Google Scholar 

  67. Goldstein, I. M., Roos, D., Kaplan, H. B. Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis. J. Clin. Invest. 56 (1975) 1155–1163.

    Google Scholar 

  68. Rossi, F. Reticuloendothelial system in health and disease. Pg. 205. Plenum Press, New York, 1976.

    Google Scholar 

  69. Romeo, D., Zabucchi, G., Rossi, F. Surface modulation of oxidative metabolism of polymorphonuclear leukocytes. In:Rossi, F., Patriarca, P., Romeo, D. (eds.): Movement, metabolisms and bactericidal mechanisms of phagocytes. Piccin Medical Books, London, 1977, p. 153–174.

    Google Scholar 

  70. Goldstein, I. M., Cerqueira, M., Lind, S., Kaplan, H. Evidence that the superoxide-generating system of human leukocytes is associated with the cell surface. J. Clin. Invest. 59 (1977) 249–254.

    Google Scholar 

  71. Babior, B. M., Kipnes, R. S., Curnutte, J. T., Dewald, B., Baggiolini, M.: Localization and solubilization of the O2- forming enzyme from human neutrophils. Clin. Res. 26 (1978) 502 A (Abstr.).

  72. Root, R. K., Metcalf, J. A. H2O2 release from human granulocytes during phagocytosis. J. Clin. Invest. 60 (1977) 1266–1279.

    Google Scholar 

  73. Root, R. K., Metcalf, J. A., Oshino, N., Chance, B. H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation and some regulating factors. J. Clin. Invest. 55 (1975) 945–955.

    Google Scholar 

  74. Curnutte, J. T., Alfred, R. H., Karnovsky, M. L., Babior, B. M.: Reversible stimulation of O2- forming system in human polymorphonuclear leukocytes (PMNs). Clin. Res. 25 (1977) 337 A (Abstr.).

  75. Korchak, H. M., Weissmann, G. Changes in membrane potential of human granulocytes antecede the metabolic responses to surface stimulation. Proc. Natl. Acad. Sci. 75 (1978) 3818–3822.

    Google Scholar 

  76. Klebanoff, S. J. Antimicrobial mechanisms of neutrophilic polymorphonuclear leukocytes. Semin. Hematol. 12 (1975) 117–142.

    Google Scholar 

  77. Bainton, D. F., Farquhar, M. G. Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. II. Cytochemistry and electron microscopy of bone marrow cells. J. Cell Biol. 39 (1968) 299–317.

    Google Scholar 

  78. Harrison, J. E., Schultz, J. Studies on the chlorinating activity of myeloperoxidase. J. Biol. Chem. 251 (1976) 1371–1374.

    Google Scholar 

  79. Klebanoff, S. J. Iodination of bacteria: a bactericidal mechanism. J. Exp. Med. 126 (1967) 1063–1078.

    Google Scholar 

  80. Zgliczynski, J. M., Stelmaszynska, T. Chlorinating ability of human phagocytosing leukocytes. Eur. J. Biochem. 56 (1975) 157–162.

    Google Scholar 

  81. Zgliczynski, J. M., Stelmaszynska, T., Ostrowski, W. Myeloperoxidase of human leukemic leukocytes: oxidation of amino acids in the presence of hydrogen peroxide. Eur. J. Biochem. 4 (1968) 540–547.

    Google Scholar 

  82. Strauss, R. R., Paul, B. B., Jacobs, A. A. Role of the phagocyte in host-parasite interactions. XXII H2O2-dependent decarboxylation and deamination by myeloperoxidase and its relationship to antimicrobial activity. J. Reticuloendothel. Soc. 7 (1970) 754–761.

    Google Scholar 

  83. Klebanoff, S. J. Myeloperoxidase: Contribution to the microbicidal activity of intact leukocytes. Science 169 (1970) 1095–1097.

    Google Scholar 

  84. Tauber, A. I., Babior, B. M. Evidence for hydrocyl radical production by human neutrophils. J. Clin. Invest. 60 (1977) 374–379.

    Google Scholar 

  85. Beauchamp, C., Fridovich, I. A mechanism for the production of ethylene from methional: the generation of hydroxyl radical by xanthine oxidase. J. Biol. Chem. 245 (1970) 4641–4646.

    Google Scholar 

  86. Klebanoff, S. J. Antimicrobial systems of the polymorphonuclear leukocyte. In:Bellanti, J. A., Dayton, D. H. (eds.): The phagocytic cell in host resistance. Raven Press, New York, 1975, p. 45–60.

    Google Scholar 

  87. Rosen, H., Klebanoff, S. J. Formation of singlet oxygen by the myeloperoxidase-mediated antimicrobial system. J. Biol. Chem. 252 (1977) 4803–4810.

    Google Scholar 

  88. Baehner, R. L. Disorders of leukocytes leading to recurrent infection. Pediat. Clin. North Am. 19 (1972) 935–956.

    Google Scholar 

  89. Nicholls, P., Schoubaum, G. R. Catalases. In:Boyer, P. D., Lardy, H., Myrback, K. (eds): The Enzymes, 2nd Ed. Academic Press, New York, 1963, p. 198–200.

    Google Scholar 

  90. Reed, P. W. Glutathione and the hexose monophosphate shunt in phagocytizing and hydrogen peroxide-treated rat leukocytes. J. Biol. Chem. 244 (1969) 2459–2464.

    Google Scholar 

  91. McCord, J. M., Fridovich, I. The biology and pathology of oxygen radicals. Ann. Int. Med. 89 (1978) 122–127.

    Google Scholar 

  92. Mandell, G. L. Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils. Infect. Immun. 9 (1974) 337–341.

    Google Scholar 

  93. Spitznagel, J. K. Bactericidal mechanisms of the granulocyte. In:Greenwalt, T. J., Jamieson, G. A. (eds.): The granulocyte function and clinical utilization. Alan R. Liss, Inc., New York, 1977, p. 103–139.

    Google Scholar 

  94. Mandell, G. L.: Intraphagosomal pH of human polymorphonuclear neutrophils. Proc. Soc. Exp. Biol. Med. (1970) 447–449.

  95. Strominger, J. L., Tipper, D. J. Structure of bacterial cell walls: the lysozyme substrate. In:Osserman, E. F., Canfield, R. E., Beychok, S. (eds.): Lysozyme. Academic Press, New York, 1974, p. 169–184.

    Google Scholar 

  96. Muschel, L. H. Immune bactericidal and bacteriolytic reactions. In:Wolstenhome, G. E. W., Knight, J. (eds.): Ciba Foundation Symposium on Complement. Little Brown Co., Inc., Boston, 1965, p. 155–169.

    Google Scholar 

  97. Masson, P. L., Heremans, J. F., Schonne, E. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J. Exp. Med. 130 (1969) 643–658.

    Google Scholar 

  98. Hirsch. J. G. Phagocytin. A bactericidal substance from polymorphonuclear leukocytes. J. Exp. Med. 103 (1956) 589–611.

    Google Scholar 

  99. Skarnes, R. C., Watson, D. W. Characterization of leukin. An antibacterial factor from leukocytes active against gram-positive pathogens. J. Exp. Med. 104 (1956) 829–845.

    Google Scholar 

  100. Klebanoff, S. J., Harmon, L. B. Antimicrobial systems of mononuclear phagocytes. In:van Furth, R. (ed.): Mononuclear Phagocytes. Oxford Blackwell Scientific Publications, Oxford, 1975, p. 507–545.

    Google Scholar 

  101. Stossel, T. P., Mason, R. J., Pollard, T. D. Isolation and properties of phagocytic vesicles. II. Alveolar macrophages. J. Clin. Invest. 51 (1972) 604–614.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakhireh, B., Block, L.H. & Root, R.K. Neutrophil function and host resistance. Infection 7, 88–98 (1979). https://doi.org/10.1007/BF01641619

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01641619

Keywords

Navigation