Skip to main content
Log in

Time-resolved confocal fluorescence microscopy of porphyrins for phototherapy

  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The application of a novel time-resolved confocal fluorescence microspectrometer to studies of the distribution and speciation of porphyrin photosensitizers in rat C6 cerebral glioma cells is described. The instrument combines a mode-locked argon ion laser excitation source with time-correlated single photon counting fluorescence detection and has sub-micron spatial and sub-nanosecond temporal resolution. The porphyrins studied were haematoporphyrin derivative (HpD), haematoporphyrin IX (HP), porphyrinc (Pc) and the tetrakiscarborane carboxylate ester of 2,4-(α,β-dihydroxyethyl) deuteroporphyrin IX (BOPP). From the heterogeneous emission observed in vitro, assignments and spatial location of various porphyrin species are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kohen E, Hirschberg JG.Cell Structure and Function by Microspectrofluorometry. London: Academic Press, 1989

    Google Scholar 

  2. Lakowicz JR.Principles of Fluorescence Spectroscopy. New York: Plenum Press, 1983

    Google Scholar 

  3. Phillips D. Luminescence lifetimes in biological systems.Analyst 1994,119:543–50

    PubMed  Google Scholar 

  4. O'Connor DV, Phillips D.Time-correlated Single Photon Counting. London: Academic Press, 1984

    Google Scholar 

  5. Minami T, Kawahigashi M, Sakai Y, Shimamoto K, Hirayama S. Fluorescence lifetime measurements under a microscope by the time-correlated singlephoton counting technique.J Lumin 1986,35:247–53

    Google Scholar 

  6. Wilson T, Sheppard C.Theory and Practice of Scanning Optical Microscopy. London: Academic Press, 1984

    Google Scholar 

  7. Seidlitz HK, Stettmaier K, Wessels JM, Schneckenburger H. Intracellular fluorescence polarization, picosecond kinetics, and light-induced reactions of photosensitizing porphyrins.Opt Eng 1992,31:1482–6

    Google Scholar 

  8. Seidlitz HK, Schneckenburger H, Stettmaier K. Timeresolved polarization measurements of porphyrin fluorescence in solution and in single cells.Photochem Photobiol B:Biol 1990,5:391–400

    Google Scholar 

  9. Dougherty TJ. Photodynamic therapy.Photochem Photobiol 1993,58:895–900

    PubMed  Google Scholar 

  10. Luo Y, Chang CK, Kessel D. Rapid initiation of apoptosis by photodynamic therapy.Photochem Photobiol 1996,63:528–34

    PubMed  Google Scholar 

  11. Kahl SB, Koo M-S. Synthesis of tetrakis-carboranecarboxylate esters of 2,4-bis-(α,β-dihydroxyethyl)-deuteroporphyrin IX.J Chem Soc Chem Commun 1990,24: 1769–71

    Google Scholar 

  12. Slama JT, Smith HW, Grant Willson C, Rapoport H. Porphyrin-protein bond of cytochromec. Structure of Porphyrinc.J Chem Soc 1975,97:6556–62

    Google Scholar 

  13. Ghiggino KP, Bennett LE, Henderson RW. Photochemical properties of porphyrinc: an agent for use in tumour phototherapy.Photochem Photobiol 1988,47:65–72

    PubMed  Google Scholar 

  14. Lipson RL, Baldes EJ, Olsen AM. The use of derivative of hematoporphyrin in tumour detection,J Nat Cancer Inst 1961,26:1–8

    PubMed  Google Scholar 

  15. Ghiggino KP, Harris MR, Spizzirri PG. Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope.Rev Sci Inst 1992,63:2999–3002

    Google Scholar 

  16. Ghiggino KP, Spizzirri PG, Smith TA. Time-resolved confocal microspectroscopic imaging. In: Masuhara H (ed)Microchemistry: Spectroscopy and Chemistry in Small Domains. Amsterdam: North-Holland, 1994:197–210

    Google Scholar 

  17. Grayson TP, Wang LJ. 400-ps time resolution with a passively quenched avalanche photodiode.Appl Opt 1993,32:2907–10

    Google Scholar 

  18. Munday AD, Siritana A, Hill JS, Kahl SB, Nagley P. Mitochondria are the functional intracellular target for a photosensitizing boronated porphyrin.Biochem Biophys Acta 1996,1311:1–4

    PubMed  Google Scholar 

  19. Hill JS, Kahl SB, Kaye AH, Stylli SS, Koo M-S, Gonzales MF, Vardaxis NJ, Johnson CI. Selective tumour uptake of a boronated porphyrin in an animal model of cerebral glioma.Proc Natl Acad Sci USA 1992,89:1785–9

    PubMed  Google Scholar 

  20. Hill JS, Kahl SB, Stylli SS, Nakamura Y, Koo M-S, Kaye AH. Selective tumour kill of cerebral glioma by photodynamic therapy using a boronated porphyrin photosensitizer.Proc Natl Acad Sci USA 1995,92:12126–30

    PubMed  Google Scholar 

  21. Hill J, Kahl SB, Kaye A. Unpublished observation

  22. Henderson RW, Bohmer RM, Kaye AH, Clezy PS, Gardner JM, Scourides PA, Morstyn G. Porphyrinc (Pc): a compound for use in phototherapy of tumours with no significant generalised photosensitivity. In: Jori G, Perria C (eds)Photodynamic Therapy of Tumours and Other Diseases. Padova, Italia: Libreria Progetto, 1985:264–6

    Google Scholar 

  23. Kaye A. Photoradiation of brain tumours. In: Bock G, Harriett S (eds)Photosensitising Compounds: Their Chemistry, Biology and Clinical Use. Ciba Foundation symposium No 146, Chichester, U.K.: John Wiley and Sons, 1989:209–21

    Google Scholar 

  24. Woodburn KW, Vardaxis NJ, Hill JS, Kaye AH, Phillips DR. Subcellular localization of porphyrins using confocal laser scanning microscopy.Photochem Photobiol 1991,54:725–32

    PubMed  Google Scholar 

  25. West CML, Moore JV. The photodynamic effects of photofrin II, hematoporphyrin derivative, hematoporphyrin, and tetrasodium-meso-tetra(4-sulfonatophenyl) porphine in vitro: clonogenic cell survival and drug uptake studies.Photochem Photobiol 1989,49: 169–74

    PubMed  Google Scholar 

  26. Andreoni A, Cubeddu R. Properties of the blue-shifted emission of hematoporphyrin and related derivatives in aqueous solution.Chem Phys Lett 1983,100:503–7

    Google Scholar 

  27. Pottier R, Truscott TG. The photochemistry of haematoporphyrin and related systems.Inl J Radiat Biol 1986,50:421–52

    Google Scholar 

  28. Spizzirri PG, Hill JS, Kahl SB, Ghiggino KP. Photophysics and intracellular distribution of a boronated porphyrin phototherapeutic agent.Photochem Photobiol (in press)

  29. Kessel D. Hematoporphyrin and HpD: photophysics, photochemistry and phototherapy.Photochem Photobiol 1984,39:851–9

    PubMed  Google Scholar 

  30. Spizzirri PG.Spectroscopy of Porphyrin Photosensitisers. University of Melbourne, MSc (Prelim.) thesis 1989

  31. Yamashita M, Nomura M, Kobayashi S, Sato T, Aizawa K. Picosecond time-resolved fluorescence spectroscopy of hematoporphyrin derivative.IEEE J Quant Elec 1984,20:1363–9

    Google Scholar 

  32. Kessel D. Probing the structure of HpD by fluorescence spectroscopy.Photochem Photobiol 1989,50:345–50

    PubMed  Google Scholar 

  33. Schneckenburger H, Seidlitz HK, Eberz J. Timeresolved fluorescence in photobiology.Photochem Photobiol B:Biol 1988,2:1–19

    Google Scholar 

  34. Tipping E, Ketterer B, Koskelo P. The binding of porphyrins by ligandin.Biochem J 1978,169:509–16

    PubMed  Google Scholar 

  35. Allison BA, Pritchard PH, Levy JG. Evidence for lowdensity lipoprotein receptor-mediated uptake of benzoporphyrin derivative.Br J Cancer 1994,69:833–9

    PubMed  Google Scholar 

  36. Rosenberger V, Margalit R. Thermodynamics of the binding of hematoporphyrin ester, a hematoporphyrin derivative-like photosensitizer, and its components to human serum albumin, human high-density lipoprotein and human low-density lipoprotein.Photochem Photobiol 1993,58:627–30

    PubMed  Google Scholar 

  37. Johnson LV, Walsh ML, Chen LB. Localization of mitochondria in living cells with rhodamine 123.Proc Natl Acad Sci USA 1980,77:990–4

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spizzirri, P.G., Hill, J.S., Kahl, S.B. et al. Time-resolved confocal fluorescence microscopy of porphyrins for phototherapy. Laser Med Sci 11, 237–246 (1996). https://doi.org/10.1007/BF02134914

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02134914

Key words

Navigation