Skip to main content

Advertisement

Log in

Are VEP abnormalities in optic neuritis (ON) dependent on plaque size? A reappraisal of the physiopathology of ON based on improved MRI and multiple-lead recordings

  • Original Articles
  • Published:
The Italian Journal of Neurological Sciences Aims and scope Submit manuscript

Abstract

Twenty patients with optic neuritis (ON) described in the previous study [23] underwent serial VEP recordings (using multiple electrode arrays) for two years. The VEPs could be correlated with the lesions revealed by MRI, Visual Field tests and other clinical findings. On the basis of their scalp distribution, they were classified as “really delayed” VEPs and “pseudo-delayed” VEPs.

Real delays could be recorded at the onset of ON or shortly afterwards, and their appearance indicated the recovery of visual function and a good prognosis.

Pseudo-delays indicated an alteration in the visual field and, unless a breakthrough of normal or delayed components appeared in the first three months, following acute ON, indicate a poor prognosis for the recovery of visual function.

The pseudo-delayed VEPs were mainly observed in patients with longer lesions revealed by means of LTE-STIR MRI [23]; there was no correlation between VEP latency and the length of plaques.

Our findings contradict previous theories on the timing of conduction alterations in ON and multiple sclerosis.

Sommario

I 20 pazienti affetti da Neurite Ottica (NO), descritti nel precedente lavoro [23] sono stati sottoposti a registrazioni seriali multicanali dei Potenziali Evocati Visivi (PEV), per un periodo di 2 anni dall'esordio della NO. I PEV potevano correlare con le lesioni evidenziate con la Risonanza Magnetica, con le alterazioni campimetriche e con altri reperti clinici. Basandoci sulla loro distribuzione in mappa, i PEV sono stati classificati come realmente “ritardati” e “pseudo-ritardati”. PEV realmente “ritardati” potevano essere registrati all'esordio, o precocemente dopo l'episodio di NO, e la presenza del “ritardo” stava ad indicare un recupero della funzione visiva e, quindi, una prognosi fausta.

Gli “pseudo-ritardi” indicavano un'alterazione del campo visivo a prognosi non favorevole per un recupero della funzione visiva, a meno che entro i primi 3 mesi dalla NO si fosse verificata una ricomparsa di componenti normali o “ritardate”.

Gli “pseudo-ritardi” erano rilievi caratteristici nei pazienti con lesioni maggiormente lunghe alle immagini LTE-STIR MRI [23]. Nessuna correlazione è stata trovata tra latenza dei PEV e lunghezza delle placche.

I nostri rilievi sono in disaccordo con precedenti teorie relative ai tempi di instaurazione-recupero delle alterazioni di conduzione nella NO e nella Sclerosi Multipla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asselman P., Chadwick D.W., Marsden C.D.:Visual evoked responses in the diagnosis and management of patients suspected of multiple sclerosis. Brain 98: 261–282, 1975.

    PubMed  Google Scholar 

  2. Becker W.J., Richards I.M.:Pattern Shift Visual Evoked Potentials in Multiple Sclerosis. Can. J. Neurol. Sci. 11: 53–59, 1984.

    PubMed  Google Scholar 

  3. Blumhardt L.D., Barret G., Kriss A., Halliday A.:The pattern of evoked potentials in lesions of the posterior visual pathways. Ann. NY Acad. Sci. 388: 369–387, 1982.

    PubMed  Google Scholar 

  4. Blumhardt L.D.: “Do evoked potentials contribute to the early diagnosis of multiple sclerosis? In:Dilemmas in the Management of Neurological Patients. (Eds. C. Warlowe and J. Garfield), Churchill-Livingstone, Edinburgh: 18–42, 1984.

    Google Scholar 

  5. Blumhardt L.D.:Variable effect of pathologic scotomata on waveform of pattern-reversal visual evoked response. Doc. Ophthalmol. 59: 107–119, 1985.

    PubMed  Google Scholar 

  6. Blumhardt L.D.:Visual field defects and pathological alterations in topography: factors complicating the estimation of visual evoked response “delay” in multiple sclerosis. In: Cracco R.Q., Bodis-Wollner I. (Eds.) Evoked Potentials, Frontiers in Clinical Neuroscience, A.R. Liss., New York: 354–365, 1986.

    Google Scholar 

  7. Chiappa K.J., Perez-Arroyo M.:Evoked potential methodologies and neurologic pathophysiology. In Asbury A.K., Mc Khan G.M. and McDonald W.I.: Disease of nervous system; Saunders Ed., New York: 1210–1213, 1992.

    Google Scholar 

  8. Dawson W.W., Maida T.M.:Relations between the human retinal cone and ganglion cell distribution. Ophthalmologica 188: 216–221, 1984.

    PubMed  Google Scholar 

  9. Duffy F.H., Bartels P.H., Burchfiel J.L.:Significance probability mapping: an aid in the topographic analyses of brain electrical activity. Electroenceph. Clin. Neurophysiol. 51: 455–462, 1981.

    PubMed  Google Scholar 

  10. Duffy F.H.:Topographic display of evoked potentials: clinical applications of brain electrical activity mapping (BEAM). In: Bodis-Wollner I. (Ed.), Evoked Potentials. Annals of the New York Academy of Sciences, 388: 183–196 pp., 1982.

  11. Halliday A.M., McDonald W.I., Mushin J.:Visual evoked potentials in patients with multiple sclerosis. In Desmedt JE. (Ed.): Visual Evoked Potentials in Man. New Developments. Clarendon Press, Oxford, 438–449 pp., 1977.

    Google Scholar 

  12. Halliday A.M.:Visual Evoked Potentials. In: Halliday A.M. (Ed.). Evoked Potentials in Clinical Testing. Churchill Livingstone, 210–235 pp., 1982.

  13. Matthews W.B., Small D.G.:Serial recordings of visual and somatosensory evoked potentials in multiple sclerosis. J. Neurol. Sci. 40: 11–21, 1979.

    PubMed  Google Scholar 

  14. McDonald W.I.:Pathophysiology of conduction in central nerve fibres. In: Desmedt J.E. (Ed.). Visual Evoked Potentials in Man: New Developments. Clarendon Press, Oxford, 427–437 pp., 1977.

    Google Scholar 

  15. McDonald W.I. andBarnes D.:The ocular manifestations of multiples sclerosis. Abnormalities of the afferent visual system. J. Neurol. Neurosurg. Psychiat. 55: 747–752, 1992.

    PubMed  Google Scholar 

  16. Novak G.P., Wiznitzer M., Kurtzberg D.:The utility of visual evoked potentials using hemifield stimulation and several check sizes in the evaluation of suspected Multiple Sclerosis. Electroenceph. Clin. Neurophysiol. 71: 1–9, 1988.

    PubMed  Google Scholar 

  17. Nunez P.L.:Electric fields to the brain: the neurophysics of EEG. New York: Oxford University Press, 1981.

    Google Scholar 

  18. Onofrj M., Bazzano S., Malatesta G., Gambi D.:Pathophysiology of delayed evoked potentials in Multiple Sclerosis. Functional Neurology 5: 310–319, 1990.

    Google Scholar 

  19. Onofrj M., Bazzano S., Malatesta G., Fulgente T.:Mapped distribution of pattern reversal VEPs to central field and lateral half-field stimuli of different spatial frequencies. Electroenceph. Clin. Neurophysiol. 80: 167–180, 1991.

    PubMed  Google Scholar 

  20. Onofrj M., Fulgente T., Malatesta G., Ferracci F.:Visual Evoked Potentials (VEPs) to altitudinal stimuli: effects of stimulus manipulations on VEP scalp topography. Clin. Vision Sci. 8: 529–544, 1993.

    Google Scholar 

  21. Onofrj M., Fulgente T., Thomas A., Malatesta G., Peresson M., Locatelli T., Martinelli V., Comi G.:Source model and scalp topography of pattern reversal visual evoked potentials to altitudinal stimuli suggest that infoldings of calcarine fissure are not part of VEP generators. Brain Topography, 3: 217–231, 1994.

    Google Scholar 

  22. Plant G.T.:Transient visually evoked potentials to sinusoidal gratings in optic neuritis. Journal of Neurology Neurosurgery & Psychiatry, 46: 1125–1133, 1983.

    Google Scholar 

  23. Tartaro A., Onofrj M. Delli Pizzi C., Bonomo L., Thomas A., Fulgente T., Gambi D.:Long time echo STIR sequence magnetic resonance imaging of optic nerves in optic neuritis. Ital. J. Neurol. Sci 17: 35–42, 1996.

    PubMed  Google Scholar 

  24. Waxman S.G., Brill M.H.:Conduction through demyelinated plaques in multiple sclerosis: Computer simulation of facilitation by short internodes. J. Neurol. Neurosurg. Psychiat. 41: 408–416, 1978.

    PubMed  Google Scholar 

  25. Waxman S.G., Wood S.L.:Impulse conduction in inhomogenous axons: Effects of variation in voltage-sensitive ionic conductances on invasion of demyelinated axon segment and preterminal fibres. Brain Res. 294: 111–122, 1984.

    PubMed  Google Scholar 

  26. Waxman S.G.:Clinical Course and Electrophysiology of Multiple Sclerosis. Adv. Neurol. vol. 47: Functional Recovery in Neurological Disease, edited by SG Waxman. Raven Press, New York, 157–184, 1988.

    Google Scholar 

  27. Youl B.D., Turano G., Miller D.H. et al.:The pathophysiology of acute optic neuritis. An association of Gadolinium leakage with clinical and electrophysiological deficits. Brain 114: 2437–2450, 1991.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulgente, T., Thomas, A., Lobefalo, L. et al. Are VEP abnormalities in optic neuritis (ON) dependent on plaque size? A reappraisal of the physiopathology of ON based on improved MRI and multiple-lead recordings. Ital J Neuro Sci 17, 43–54 (1996). https://doi.org/10.1007/BF01995708

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01995708

Key Words

Navigation